
The NAG Algorithmic Differentiation Portfolio

January 2017

Jacques du Toit

Johannes Lotz

Experts in numerical software and

High Performance Computing

NAG Algorithmic Differentiation Portfolio

▶ AD tools
• dco/c++, dco/map and dco/fortran
• dco/matlabu� and dco/pythonu�

• Other languages possible
▶ Commercial support for tools
▶ AD consulting services
▶ NAG AD Library

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 2

NAG AD Library

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 3

NAG AD Library

▶ Adjoint (algorithmic/symbolic), tangent and second order
adjoint versions of NAG Library routines

▶ Can be used with any AD tool, including handwritten adjoints
▶ Useful if need robust adjoints of complex/tricky numerical

routines
• Constrained non-linear programming that is not iterated to

convergence
• Nearest correlation matrix routines
• Iterative solvers such as CG, GMRES, Multigrid, ...

▶ Relevant checkpointing to constrain memory
▶ Checkpointing exposed to users so that memory can be

managed

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 4

NAG AD Library

Why might this be interesting?
▶ For complex numerical routines (e.g. NLP) making a robust

discrete adjoint is costly
▶ For other routines (e.g. NCM, CG, GMRES) making efficient

adjoint requires good understanding of underlying mathematics

These can be done, but many customers feel it’s not good use of
their time

NAG AD Library specifically designed to be tool-agnostic

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 5

Consulting and Commercial Support for AD Tools

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 6

Commercial Support for our AD Tools

NAG doesn’t leave you on your own
▶ We have dedicated team working full time on our AD products

• On-demand paid resource, not professor/post-doc who’ll reply
when they have time

▶ We provide excellent customer support (timely, comprehensive,
authoritative)
• Help with using tools/products
• Help applying AD tools to difficult sections of code (memory

management, numerics, etc)
• Can give advice on most suitable functionality to use, etc

▶ Implement bug fixes
▶ Implement feature requests
▶ Provide comprehensive documentation

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 7

AD Consulting Services

For larger pieces of work customers don’t want to do themselves.
Can be anything, but typical examples are
▶ Apply our own AD tools to customer’s code
▶ Help customer develop efficient checkpointing strategies
▶ Develop symbolic or mixed discrete/symbolic adjoints of

numerical components
▶ Develop solutions for adjoints of mixed-language applications
▶ Develop solutions for differentiating through client’s own

iterative solvers
▶ ... etc

NAG and RWTH Aachen have more than a decade of experience
applying AD to financial and scientific HPC codes

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 8

dco/c++

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 9

▶ Why use an AD tool?

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 10

dco/c++

dco/c++ = Derivative Code by Overloading
▶ Operator overloading tool based on a tape

• Why operator overloading?
▶ Arbitrary order tangents and adjoints
▶ Very clean API
▶ Designed to support checkpointing and “user adjoints”
▶ Expression templates give local partials at compile time
▶ Highly optimised and cache-efficient tape structure
▶ Has a host of specialised functionality, a lot of which is unique
▶ Easy interfacing with other languages (e.g. Matlab, Python,

Fortran) for adjoints of these codes or mixed-source codes

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 11

dco/c++

Key features of dco/c++ (there are many others we’ll discuss)
▶ Easy to use
▶ Cross platform (Windows, Linux)
▶ Handles whole of C++98: next major release will support

C++11
▶ Very fast
▶ Very flexible: tool does not assume that adjoints are easy!
▶ Supports parallelism
▶ Checkpointing allows memory to be constrained almost

arbitrarily
▶ Developed and tested to industrial software engineering

standards
▶ Fully documented and commerically supported

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 12

dco/c++ is Battle Proven

dco/c++ represents over 15 man years of R&D and has been
“proven in battle”
▶ Incorporated into core quant libraries of several large banks
▶ Applied to MIT Global Circulation Model (ocean and weather)
▶ Applied to OpenFOAM
▶ Applied to PETSc
▶ German Aerospace Centre DG solver padge (built on deal.II)
▶ London Queen Mary University fluid dynamics code gpde

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 13

Using dco/c++: Tangent Mode

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 14

Tangent Mode

Recall for function 𝐹 tangent mode computes

𝑦 = 𝐹(𝑥)

𝑦(1) = ⟨
𝜕𝐹
𝜕𝑥 , 𝑥(1)⟩

so getting whole gradient/Jacobian is 𝑂(𝑛)

Only way to get a feeling for dco/c++ ease of use is to see it used

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 15

Tangent Mode

template<class FP>
FP foo(FP a, FP std::vector<FP> &x) {

... C++98 code ...
}

int main() {
using FP = double;
FP a; std::vector<FP> x;
// Load input data

FP y = foo(a, x);
}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 16

template<class FP>
FP foo(FP a, std::vector<FP> &x) {

... C++98 code ...
}

int main() {
// dco/c++ tangent type
using FP = dco::gt1s<double >::type;

FP a; std::vector<FP> x;
// Load input data

// Seed tangent
dco::derivative(x[7]) = 1;

FP y = foo(a, x);

// Read value
double v = dco::value(y);
// Harvest Gradient(7)
double t = dco::derivative(y);

}

Second Order Tangent Mode

Second order tangent model of a function 𝐹 computes

𝑦 = 𝐹(𝑥)

𝑦(1) = ⟨
𝜕𝐹
𝜕𝑥 , 𝑥(1)⟩

𝑦(2) = ⟨
𝜕𝐹
𝜕𝑥 , 𝑥(2)⟩

𝑦(1,2) = ⟨
𝜕2𝐹
𝜕2𝑥

, 𝑥(1), 𝑥(2)⟩ + ⟨
𝜕𝐹
𝜕𝑥 , 𝑥(1,2)⟩

for inputs 𝑥, 𝑥(1), 𝑥(2) and 𝑥(1,2). Getting whole Hessian is 𝑂(𝑛2)

In dco/c++ higher order is done through recursive instantiation

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 18

template<class FP> FP foo(FP a, std::vector<FP> &x) { ... }

int main() {
// dco/c++ second order tangent type
using FP = dco::gt1s< dco::gt1s<double >::type >::type;

FP a; std::vector<FP> x;
// Load input data

// Seed x^(1)
dco::derivative(dco::value(x[7])) = 1;
// Seed x^(2)
dco::value(dco::derivative(x[3])) = 1;

FP y = foo(a, x);

// Read value
double v = dco::value(dco::value(y) ;
// Harvest Hessian(7,3)
double t = dco::derivative(dco::derivative(y)); // y^(1,2)

}

Using dco/c++: Adjoint Mode

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 20

Adjoint Mode

Recall that the adoint model of a function 𝐹 computes

𝑦 = 𝐹(𝑥)

𝑥(1) = 𝑥(1) + ⟨𝑦(1),
𝜕𝐹
𝜕𝑥 ⟩

for inputs 𝑥 and 𝑦(1) so getting whole gradient/Jacobian is 𝑂(𝑚)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 21

template<class FP> FP foo(std::vector<FP> x) { ... }

int main() {
using MODE = dco::ga1s<double >;
using FP = MODE::type;
std::vector<FP> x;
// Load inputs

MODE::global_tape = MODE::tape_t::create();
MODE::tape_t &tape = MODE::global_tape;

// Register inputs with the tape
tape->register_variable(x);

FP y = foo(x);

tape->register_output_variable(y);
// Seed adjoint, interpret tape and harvest adjoints
dco::derivative(y) = 1;
tape->interpret_adjoint();

double v = dco::value(y);
double t = dco::derivative(x[7]);

}

Second Order Adjoint Mode

The second order adjoint model of a function 𝐹 computes

𝑦 = 𝐹(𝑥)
𝑦(2) = ⟨𝐹(𝑥), 𝑥(2)⟩

𝑥(1) = 𝑥(1) + ⟨𝑦(1),
𝜕𝐹
𝜕𝑥 ⟩

𝑥(2)
(1) = 𝑥(2)

(1) + ⟨𝑦(2)
(1),

𝜕𝐹
𝜕𝑥 ⟩ + ⟨𝑦(1),

𝜕2𝐹
𝜕𝑥2 , 𝑥(2)⟩

for inputs 𝑥, 𝑥(2), 𝑦(2)
(1) and 𝑦(1). Getting the whole Hessian is

𝑂(𝑚𝑛)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 23

int main() {
using MODE = dco::ga1s< dco::gt1s<double >::type >;
using FP = MODE::type;
std::vector<FP> x;
// Load inputs

MODE::global_tape = MODE::tape_t::create();
MODE::tape_t &tape = MODE::global_tape;
tape->register_variable(x);

// Seed tangent x^(2)
dco::derivative(dco::value(x[7])) = 1;

FP y = foo(x);

// Register output, set adjoint y_(1), interpret tape
tape->register_output_variable(y);
dco::value(dco::derivative(y)) = 1;
tape->interpret_adjoint();

// Read value
double v = dco::value(dco::value(y));
// Harvest Hessian(7,3)
double t = dco::derivative(dco::derivative(x[3]));

}

Using dco/c++ with Handwritten Adjoints

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 25

External Adjoint Interface

Making adjoints of non-trivial code is not easy
▶ We know this, we have first hand experience
▶ Naive application of any overloading tool may run out of

memory
▶ Not everything should be handled automatically by the tool

• Implicit function theorem
• Symbolic (continuous) adjoints
• Handwritten discrete adjoints
• Special handling of certain numerical procedures

dco/c++ handles all these cases with an external adjoint interface

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 26

External Adjoint Interface

Suppose we have a handwritten adjoint for a function
template<class FP>
void func(const std::vector<FP> &x, FP &y)
{ ... }

template<class FP>
void a1func(const std::vector<FP> &x, std::vector<FP> &a1x,

FP &y, FP a1y)
{ ... }

Suppose func is called in our code
template<class FP>
FP foo(std::vector<FP> &x)
{

FP y;
func(x, y);
return y;

}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 27

External Adjoint Interface

We want to use dco/c++ for foo but not func

▶ Don’t want to tape through func

▶ We want to use handwritten adjoint a1func

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 28

template<class FP> FP foo(std::vector<FP> &x)
{

// Get dco mode and create external adjoint object
using MODE = dco::mode<FP>;
using EAO = MODE::external_adjoint_object_t;
EAO* cp = MODE::global_tape ->create_callback_object <EAO>();

// Register inputs - get back passive data
using BASE = MODE::value_t;
std::vector<BASE> xp(x.size());
xp = cp->register_input(x);
// Can write arbitrary data to checkpoint (FIFO)
cp->write_data(xp);

// Run func passively , i.e. not with dco data types
BASE yp;
func(xp, yp);

// Register the outputs - returns dco data type
FP y = cp->register_output(yp);
// Write callback function to tape & return dco type
MODE::global_tape ->insert_callback(cpfoo<MODE>, cp);
return y;

}

template<class MODE>
void cpfoo(MODE::external_adjoint_object_t *cp)
{

using BASE = MODE::value_t;
// Read data from checkpoint (FIFO)
const auto &xp = cp->read_data < std::vector<BASE> >();

// Declare adjoints of inputs
std::vector<BASE> a1xp(x.size(), 0);
// Get adjoints of outputs
BASE a1y = cp->get_output_adjoint();

// Call handwritten adjoint
BASE y;
a1func(xp, a1xp, y, a1y);

// Write the adjoints into the tape
cp->increment_input_adjoint(a1xp);

}

Checkpointing to Conserve Memory

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 32

Checkpointing

Being able to “switch off” dco/c++ is an important feature
▶ Allows hand-written user adjoints and checkpointing
▶ Trade flops for memory
▶ Recompute parts of program to keep tape small

Consider the following program

𝑥
u�1⟶ 𝑥1

u�2⟶ 𝑥2
u�3⟶ 𝑥3

u�4⟶ 𝑥4
u�u�⟶ 𝑦

Suppose not enough memory to tape the whole computation

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 33

Checkpointing

▶ At each 𝑥1, 𝑥2, 𝑥3, use external adjoint interface to write a
checkpoint 𝑐u� of computation to the tape

▶ Checkpoint is sufficient state to restart computation from that
point

𝑥
u�1⟶ 𝑥1

↓
u�1

u�2⟶ 𝑥2
↓
u�2

u�3⟶ 𝑥3
↓
u�3

u�4⟶ 𝑥4
u�u�⟶ 𝑦

▶ Run 𝑓1, 𝑓2, 𝑓3, 𝑓4 passively, i.e. without using dco/c++ types
▶ Run 𝑓u� actively (recording tape) and interpret to get adjoints 𝑥4
▶ Restore 𝑐3 and run 𝑓4 actively, interpret and get 𝑥3
▶ Restore 𝑐2 and run 𝑓3 actively, interpret and get 𝑥2, etc
▶ Tape only ever as big as needed for a single function 𝑓u�
▶ But effectively compute 𝑓1, 𝑓2, 𝑓3, 𝑓4 twice, so more flops

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 34

Checkpointing

Literature on checkpointing for AD is quite big
▶ Main question is where to place and how big to make tape
▶ For ensembles (e.g. Monte Carlo paths) treat several paths at

once
• Try to keep tape in L1/L2 cache
• Can exploit parallelism (record multiple tapes in parallel)

▶ For evolutions (e.g. PDE solvers) typically checkpoint every 𝑘
time steps

▶ Algorithm for optimal placement of checkpoints is known
(revolve). Totally depends on user code features

▶ Research is underway to integrate this into dco/c++
• Linux process forking (automatic checkpointing)
• Adjoint code modules (Design Patterns)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 35

Additional dco/c++ Functionality

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 36

Additional dco/c++ Functionality

▶ Vector mode adjoints and tangents
▶ Different tape types
▶ Activity analysis
▶ First and second order sparsity pattern detection
▶ Parallel adjoints through multiple thread-safe tapes
▶ Tape compression (Jacobian/gradient preaccumulation)
▶ Direct tape manipulation
▶ Adjoint MPI support (correct reversal of communication)
▶ Non-tape adjoint storage
▶ Combined debugging: finite diff. vs tangent vs adjoints
▶ ...

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 37

Vector Mode

▶ Consider vector-valued function

𝑥 u�⟶ 𝑦

where 𝑦 ∈ ℝu�

▶ Adjoint model 𝐹(1) computes

𝑥(1) = 𝑥(1) + ⟨𝑦(1),
𝜕𝐹
𝜕𝑥 ⟩

▶ To get whole gradient call 𝐹(1) 𝑚 times with 𝑦(1) ranging over
Cartesian basis vectors in ℝu�

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 38

Vector Mode

𝑥(1) = 𝑥(1) + ⟨𝑦(1),
𝜕𝐹
𝜕𝑥 ⟩

▶ u�u�
u�u� independent of 𝑦(1), as is dco/c++ tape

▶ Tape interpretation just computes inner product
▶ So we can compute all 𝑚 inner products at once with a single

tape interpretation
▶ Think of 𝑦(1) being a matrix instead of a vector
▶ For vector-valued functions this typically gives a respectable

speedup vs multiple interpretations
▶ dco/c++ has vector mode support for tangent and adjoint codes

Vector mode exposed through dco::ga1v and dco::gt1v types

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 39

Activity Analysis

▶ In large, complex, legacy codes, not always easy to tell which
intermediate variables are active

▶ If we don’t treat all as active, we risk wrong sensitivities
▶ If we treat all as active, we risk very large tape
▶ dco/c++ supports activity analysis types
▶ Before writing local data to tape, checks that there is

dependence on active input data
▶ Slightly slower recording, but can result in (much) smaller tapes

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 40

Sparsity Pattern Detection

▶ Pattern data types can reveal which elements of
Jacobian/Hessians are structurally zero

▶ Structural zero means no data dependence between a given
input/output pair, rather than a sensitivity that happens to be
zero

template<class FP> void foo(FP x1, FP x2, FP &y1, FP &y2)
{

y1 = x1*x2; // y1 depends on x1 & x2 but deriv may be zero
// if either x1=0 or x2=0

y2 = x1*x1; // structural zero: y2 doesn't depend on x2
}

Information useful when computing Jacobians/Hessians as can
reduce number of tape interpretations

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 41

Parallel Adjoint

▶ Up to now we’ve only seen one global tape
dco::ga1s<double >::global_tape =

dco::ga1s<double >::tape_t::create();

▶ Global tape is thread safe (OpenMP) but incurs overheads
▶ dco/c++ also has thread local tapes
▶ Can be recorded and interpreted concurrently on different

threads with no performance loss
▶ Useful for things like adjoints of Monte Carlo simulations

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 42

Tape Compression by Gradient Preaccumulation

▶ Sometimes we experience a “narrowing” in the computational
graph

𝑥
↑

ℝ500

⟶ ⋯ ⟶ 𝑤1
↑

ℝ10

⟶ ⋯ ⟶ 𝑤2
↑

ℝ10

⟶ ⋯ ⟶ 𝑦
↑

ℝ70

▶ The graph between 𝑤1 and 𝑤2 may be complex and tape
representation may be huge

▶ Collapsing this graph into a Jacobian requires only 100 storage
elements

▶ Can dramatically reduce tape size
▶ dco/c++ provides API for marking which sections of the

program to collapse into preaccumulated Jacobians

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 43

Further dco/c++ Functionality

▶ Direct tape manipulation
▶ Adjoint MPI support (correct reversal of communication)
▶ Non-tape adjoint storage
▶ Combined debugging: finite diff. vs tangent vs adjoints
▶ Adjoint code modules (design patterns)

Coming in dco/c++ v4.0
▶ Code instrumentation for bidirectional dataflow analysis
▶ Linux only (low-level memory info)

• Combined storage of active/passive data: zero-copy when calling
functions passively

• Fixed, iteration-independent adjoint memory size
• Automatic spawing/reducing of per-thread tapes for OpenMP
• Fully automatic checkpoint support (process spawning)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 44

CUDA Support via dco/map

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 45

dco/map

dco/map = Meta Adjoint Programming
▶ Not just for CUDA, works with any C++11 compiler
▶ Designed to work properly (high performance) on CUDA GPUs
▶ Completely separate from dco/c++, but easy to use with it
▶ Tool for tape-free adjoints

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 46

dco/map

What’s the problem with tape?
▶ Each thread needs its own tape
▶ 30,000 threads on GPU, only about 12GB RAM
▶ For GPU-intensive applications (XVA) highly likely to run out of

GPU memory if tape all floating point operations
▶ Tricky to have efficient tape in presence of warp divergence

(non-coalesced reads/writes)
▶ Taping will be much slower on GPU than recompute

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 47

dco/map

dco/map designed to address this
▶ Is a tape-free operator overloading AD tool
▶ Uses meta-programming to let C++11 compiler write the

adjoint code at compile time
▶ Goal is to be as fast as hand-written discrete adjoint

• On CUDA we more or less achieve this
• On x86 we’re not far off

▶ It’s faster than tape on CPUs (typically quite a bit faster)

but dco/map is more demanding to use and requires more code
changes than dco/c++

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 48

dco/map

To use dco/map
▶ Functions must have void return type
▶ All function arguments passed by reference
▶ All intermediate LHS must have type const auto

▶ Variables may not be overwritten
• Linear overwriting handled automatically
• Non-linear overwrites can be handled but require user input

(storage)
▶ All control flow (conditionals, loops, function calls) must be

implemented with dco/map macros
• Macros just thin wrappers to factory methods, so nothing scary

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 49

template<class Active>
void foo(int n, const Active x[], Active &y)
{

// Intermediate LHS of type const auto
const auto a = sin(x[0])*x[1];

// Outputs of control flow statements
Active a, b(0), c, d;
// A for-loop with simple linear over-writing
MAP_FOR(Active, i, 2, n-1, 1) {

b += x[i];
} MAP_FOR_END;

// Call function bar to compute c
MAP_CALL(Active, bar(a, b, c));

// Use an if-statement to compute d
MAP_IF(Active, b < c) {

d = exp(a)*b;
} MAP_ELSE {

d = c*cos(b-a);
} MAP_IF_END;

y = d*c*b*a;
}

int main()
{

using Active = dco_map::ga1s<double >::type;
int n = 10;
Active * x = new Active[n];
// Populate x with data
...

// Declare output
Active y;
// Seed adjoint
dco_map::derivative(y) = 1;

foo(n, x, y);

// Read value
double v = dco_map::value(y);
// Read adjoint
double t dco_map::derivative(x[7]);

}

dco/map Features

dco/map has the following features/functionality
▶ First order tangent and adjoint (second order in development)
▶ Produces single unified code for primal, tangent and adjoint
▶ Primal as fast as non dco/map primal
▶ Specialised high-performance array types to handle race

conditions inherent in parallel adjoints
▶ Supports whole of C++11, cross platform
▶ API for storing things you don’t want to recompute
▶ Easy integration with dco/c++ via external adjoint interface

dco/map currently in final stage client PoC for GPU XVA
application: GPU adjoint factor is 2.6x

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 52

Our Value Proposition

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 53

NAG AD Value Proposition

▶ Industry leading AD consulting services
▶ Industry leading AD tools

• Speed
• Tape size
• Functionality and flexibility

▶ The only (commercial) solution that can handle CUDA
▶ Dedicated commercial support for all our AD products

Thank you

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com 54

	NAG AD Library
	Consulting and Commercial Support for AD Tools
	dco/c++
	Using dco/c++: Tangent Mode
	Using dco/c++: Adjoint Mode
	Using dco/c++ with Handwritten Adjoints
	Checkpointing to Conserve Memory
	Additional dco/c++ Functionality
	CUDA Support via dco/map
	Our Value Proposition

