M‘M
1

UARLL

u u

TR
s ”%%a, aJnlw,' Iev’ 710] Zzi 7/

077 Iﬁ/y//n/

22, ;;7/7;;,
,< 7% 747

/4 /,,/’//;,,;

na ®  Experts in numerical software and
g High Performance Computing



NAG Algorithmic Differentiation Portfolio

» AD tools

= dco/c++, dco/map and dco/fortran
= dco/matlab” and dco/python”
= Other languages possible

» Commercial support for tools
» AD consulting services
» NAG AD Library

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



NAG AD Library

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




NAG AD Library

» Adjoint (algorithmic/symbolic), tangent and second order
adjoint versions of NAG Library routines

» Can be used with any AD tool, including handwritten adjoints

» Useful if need robust adjoints of complex/tricky numerical
routines

= Constrained non-linear programming that is not iterated to
convergence

= Nearest correlation matrix routines

= |terative solvers such as CG, GMRES, Multigrid, ...

» Relevant checkpointing to constrain memory

» Checkpointing exposed to users so that memory can be
managed

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



NAG AD Library

Why might this be interesting?

» For complex numerical routines (e.g. NLP) making a robust
discrete adjoint is costly

» For other routines (e.g. NCM, CG, GMRES) making efficient
adjoint requires good understanding of underlying mathematics

These can be done, but many customers feel it's not good use of
their time

NAG AD Library specifically designed to be tool-agnostic

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Consulting and Commercial Support for AD Tools

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Commercial Support for our AD Tools

NAG doesn’t leave you on your own

» We have dedicated team working full time on our AD products
= On-demand paid resource, not professor/post-doc who'll reply
when they have time ....

» We provide excellent customer support (timely, comprehensive,
authoritative)

= Help with using tools/products

= Help applying AD tools to difficult sections of code (memory
management, numerics, etc)

= Can give advice on most suitable functionality to use, etc

» Implement bug fixes
» Implement feature requests

» Provide comprehensive documentation

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



AD Consulting Services

For larger pieces of work customers don't want to do themselves.
Can be anything, but typical examples are

» Apply our own AD tools to customer'’s code
> Help customer develop efficient checkpointing strategies

» Develop symbolic or mixed discrete/symbolic adjoints of
numerical components

» Develop solutions for adjoints of mixed-language applications

» Develop solutions for differentiating through client’s own
iterative solvers

> cae GUE

NAG and RWTH Aachen have more than a decade of experience
applying AD to financial and scientific HPC codes

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




dco/c++

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.co




» Why use an AD tool?

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




dco/c++ = Derivative Code by Overloading
» Operator overloading tool based on a tape
= Why operator overloading?

Arbitrary order tangents and adjoints

Very clean API

Designed to support checkpointing and “user adjoints”
Expression templates give local partials at compile time
Highly optimised and cache-efficient tape structure

Has a host of specialised functionality, a lot of which is unique

V2 QW2 & VF VIRV AE VY

Easy interfacing with other languages (e.g. Matlab, Python,
Fortran) for adjoints of these codes or mixed-source codes

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



dco/c++

Key features of dco/c++ (there are many others we'll discuss)
» Easy to use

» Cross platform (Windows, Linux)

» Handles whole of C++98: next major release will support

Gl

Very fast

Very flexible: tool does not assume that adjoints are easy!

Supports parallelism

Ve 'V o Aty

Checkpointing allows memory to be constrained almost
arbitrarily

> Developed and tested to industrial software engineering
standards

» Fully documented and commerically supported

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




dco/c++ is Battle Proven

dco/c++ represents over 15 man years of R&D and has been
“proven in battle”

» Incorporated into core quant libraries of several large banks

» Applied to MIT Global Circulation Model (ocean and weather)
» Applied to OpenFOAM

» Applied to PETSc

» German Aerospace Centre DG solver padge (built on deal.ll)
» London Queen Mary University fluid dynamics code gpde

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Using dco/c++: Tangent Mode

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




Tangent Mode

Recall for function F tangent mode computes

y=F(x)
y( = <g,x<1>>
X

so getting whole gradient/Jacobian is O(n)

Only way to get a feeling for dco/c++ ease of use is to see it used

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Tangent Mode

template<class FP>

FP foo(FP a, FP std::vector<FP> &x) {
C++98 code

}

int main() {
using FP = double;
FP a; std::vector<FP> x;
// Load input data

FP y = foo(a, x);

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



template<class FP>

FP foo(FP a, std::vector<FP> &x) {
C++98 code

}

int main() {
// dco/c++ tangent type
using FP = dco::gtls<double>::type;

FP a; std::vector<FP> x;
// Load input data

// Seed tangent
dco::derivative (x[7]) = 1;

FP y = foo(a, x);

// Read value

double v = dco::value(y);

// Harvest Gradient (7)

double t = dco::derivative(y);




Second Order Tangent Mode

Second order tangent model of a function F computes

y=FXx)
y = <g,x<1>>
e

y@ = <‘3_F,x<2>>
X

2
azi ox

for inputs x, x1, x® and x(12) Getting whole Hessian is O(n?)

In dco/c++ higher order is done through recursive instantiation

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



template<class FP> FP foo(FP a, std::vector<FP> &x) { ... }
int main() {
// dco/c++ second order tangent type

using FP = dco::gtls< dco::gtls<double>::type >::type;

FP a; std::vector<FP> x;
// Load input data

// Seed x~(1)

dco::derivative( dco::value(x[7]) ) = 1;
// Seed x~(2)
dco::value( dco::derivative (x[3]) ) = 1;

FP y = foo(a, x);

// Read value

double v = dco::value( dco::value(y) ;

// Harvest Hessian(7,3)

double t = dco::derivative(dco::derivative(y)); // y~(1,2)




Using dco/c++: Adjoint Mode

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




Adjoint Mode

Recall that the adoint model of a function F computes
y=FE)
JF
B ROy

for inputs x and ;) so getting whole gradient/Jacobian is O(m)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



template<class FP> FP foo(std::vector<FP> x) { ... }

int main() {
using MODE dco::gals<double>;
using FP MODE: :type;
std::vector<FP> x;
// Load inputs

MODE: : global_tape MODE: :tape_t::create();
MODE::tape_t &tape = MODE::global_tape;

// Register inputs with the tape
tape->register_variable(x);

FP y = foo(x);

tape->register_output_variable(y);

// Seed adjoint, interpret tape and harvest adjoints
dco::derivative(y) = 1;

tape->interpret_adjoint ();

double v = dco::value(y);
double t = dco::derivative( x[7] );




Second Order Adjoint Mode

The second order adjoint model of a function F computes

y=E)
]/(2) % <1:(x)’x(2)>

oF
R = S
oF BaL
(TN LE B eN [L i210] 1)
el <y o ax> / <y”>’ a2 >

for inputs x,x(z),yg; and y ). Getting the whole Hessian is
O(mn)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



int main() {
using MODE = dco::gals< dco::gtls<double>::type >;
using FP = MODE::type;
std::vector<FP> x;
// Load inputs

MODE::global_tape = MODE::tape_t::create();
MODE::tape_t &tape = MODE::global_tape;
tape->register_variable (x);

// Seed tangent x~(2)
dco::derivative( dco::value( x[7] ) ) = 1;

FP y = foo(x);

// Register output, set adjoint y_(1), interpret tape
tape->register_output_variable(y);

dco::value( dco::derivative(y) ) = 1;

tape->interpret_adjoint ();

// Read value

double v = dco::value( dco::value(y) );
// Harvest Hessian(7,3)
double t = dco::derivative( dco::derivative(x[3]) );




Using dco/c++ with Handwritten Adjoints

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



External Adjoint Interface

Making adjoints of non-trivial code is not easy

» We know this, we have first hand experience

> Naive application of any overloading tool may run out of
memory

> Not everything should be handled automatically by the tool

= Implicit function theorem

= Symbolic (continuous) adjoints

= Handwritten discrete adjoints

= Special handling of certain numerical procedures

dco/c++ handles all these cases with an external adjoint interface

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



External Adjoint Interface

Suppose we have a handwritten adjoint for a function

template<class FP>
void func(const std::vector<FP> &x, FP &y)
LB

template<class FP>

void alfunc(const std::vector<FP> &x, std::vector<FP> &alx,
FP &y, FP aly)

ARy

Suppose func is called in our code

template<class FP>
FP foo(std::vector<FP> &x)

{
FP y;
func(x, y);
return y;

}

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




External Adjoint Interface

We want to use dco/c++ for foo but not func
» Don't want to tape through func

» We want to use handwritten adjoint aifunc

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



\

Compute with dco

Reach foo,
must call func

=

Call func with
passive data

G

Continue with
dco types

End computation

dco data
typ

Extract
data from
dco types

dco tape

dco tape

1

Interpret tape

k; Output:y  ==p  sety;) =1 —)

Insert
input adjoints
into tape

/

Call alfunc with
passive data

from tape



template<class FP> FP foo(std::vector<FP> &x)
{
// Get dco mode and create external adjoint object
using MODE = dco::mode<FP>;
using EAO = MODE::external_adjoint_object_t;
EAO* cp = MODE::global_tape->create_callback_object<EA0>();

// Register inputs - get back passive data
using BASE = MODE::value_t;

std::vector<BASE> xp( x.size() );

Xp = cp->register_input( x );

// Can write arbitrary data to checkpoint (FIFO)
cp->write_data(xp);

// Run func passively, i.e. not with dco data types
BASE yp;
func(xp, yp);

// Register the outputs - returns dco data type

FP y = cp->register_output (yp);

// Write callback function to tape & return dco type
MODE: : global_tape->insert_callback(cpfoo<MODE>, cp);
return y;




template<class MODE>
void cpfoo(MODE::external_adjoint_object_t *cp)
{
using BASE = MODE::value_t;
// Read data from checkpoint (FIFO)
const auto &xp = cp->read_data< std::vector<BASE> >();

// Declare adjoints of inputs
std::vector<BASE> alxp( x.size(), 0 );
// Get adjoints of outputs

BASE aly = cp->get_output_adjoint ();

// Call handwritten adjoint
BASE y;
alfunc(xp, alxp, y, aly);

// Write the adjoints into the tape
cp->increment_input_adjoint ( alxp );




Checkpointing to Conserve Memory

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Checkpointing

Being able to “switch off” dco/c++ is an important feature

» Allows hand-written user adjoints and checkpointing
> Trade flops for memory

» Recompute parts of program to keep tape small

Consider the following program

Ji f fa fa fy
L == A =0 A o 1)

Suppose not enough memory to tape the whole computation

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




Checkpointing

> At each xq, x5, X3, use external adjoint interface to write a
checkpoint c; of computation to the tape

» Checkpoint is sufficient state to restart computation from that
point

A f2 fs fa fy
8 Wi 4 i w9 T 11

cl1 clz c3
Run f1,f2,f3,f4 passively, i.e. without using dco/c++ types
Run f, actively (recording tape) and interpret to get adjoints X
Restore c3 and run f4 actively, interpret and get X3
Restore ¢, and run f3 actively, interpret and get X5, etc

Tape only ever as big as needed for a single function f;

V. AV VE VR LV Y.

But effectively compute f1,f>,f3,f4 twice, so more flops

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Checkpointing

Literature on checkpointing for AD is quite big

» Main question is where to place and how big to make tape

» For ensembles (e.g. Monte Carlo paths) treat several paths at
once
= Try to keep tape in L1/L2 cache
= Can exploit parallelism (record multiple tapes in parallel)

» For evolutions (e.g. PDE solvers) typically checkpoint every k
time steps

» Algorithm for optimal placement of checkpoints is known
(revolve). Totally depends on user code features

> Research is underway to integrate this into dco/c++

= Linux process forking (automatic checkpointing)
= Adjoint code modules (Design Patterns)

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Additional dco/c++ Functionality

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Additional dco/c++ Functionality

Vector mode adjoints and tangents

Different tape types

Activity analysis

First and second order sparsity pattern detection

Parallel adjoints through multiple thread-safe tapes
Tape compression (Jacobian/gradient preaccumulation)
Direct tape manipulation

Adjoint MPI support (correct reversal of communication)
Non-tape adjoint storage

Combined debugging: finite diff. vs tangent vs adjoints

VA VARV SRV VA VA WbV ¥« W AY

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



» Consider vector-valued function
F
X—y
where y € R™
» Adjoint model F, computes
oF
Xy Ry i e

> To get whole gradient call F ), m times with y 1, ranging over
Cartesian basis vectors in R

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Vector Mode

= oF
X =5 , —
(€3] RS S
> —gi independent of y,, as is dco/c++ tape

> Tape interpretation just computes inner product

» So we can compute all m inner products at once with a single
tape interpretation

» Think of i1, being a matrix instead of a vector

» For vector-valued functions this typically gives a respectable
speedup vs multiple interpretations

» dco/c++ has vector mode support for tangent and adjoint codes

Vector mode exposed through dco::gatv and dco::gtiv types

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Activity Analysis

> In large, complex, legacy codes, not always easy to tell which
intermediate variables are active

If we don't treat all as active, we risk wrong sensitivities
If we treat all as active, we risk very large tape

dco/c++ supports activity analysis types

V= AV.AAV ., V.

Before writing local data to tape, checks that there is
dependence on active input data

» Slightly slower recording, but can result in (much) smaller tapes

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Sparsity Pattern Detection

> Pattern data types can reveal which elements of
Jacobian/Hessians are structurally zero

> Structural zero means no data dependence between a given
input/output pair, rather than a sensitivity that happens to be

Zero
template<class FP> void foo(FP x1, FP x2, FP &yl, FP &y2)
{
yl1 = x1*x2; // y1 depends on x1 & x2 but deriv may be zero
// if either x1=0 or x2=0
y2 = x1*x1; // structural zero: y2 doesn't depend on x2
}

Information useful when computing Jacobians/Hessians as can
reduce number of tape interpretations

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Parallel Adjoint

» Up to now we've only seen one global tape

dco::gals<double>::global_tape =
dco::gals<double>::tape_t::create();

» Global tape is thread safe (OpenMP) but incurs overheads
> dco/c++ also has thread local tapes

» Can be recorded and interpreted concurrently on different
threads with no performance loss

» Useful for things like adjoints of Monte Carlo simulations

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Tape Compression by Gradient Preaccumulation

» Sometimes we experience a “narrowing” in the computational

graph
%‘ —_ e — u%l —_ cee —) ’a;z —_ cee — :%
TES00 R10 R10 R70

> The graph between w; and w, may be complex and tape
representation may be huge

> Collapsing this graph into a Jacobian requires only 100 storage
elements

» Can dramatically reduce tape size

» dco/c++ provides API for marking which sections of the
program to collapse into preaccumulated Jacobians

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Further dco/c++ Functionality

Direct tape manipulation

Adjoint MPI support (correct reversal of communication)

>

>

» Non-tape adjoint storage

» Combined debugging: finite diff. vs tangent vs adjoints
>

Adjoint code modules (design patterns)

Coming in dco/c++ v4.0

» Code instrumentation for bidirectional dataflow analysis
» Linux only (low-level memory info)
= Combined storage of active/passive data: zero-copy when calling
functions passively
= Fixed, iteration-independent adjoint memory size
= Automatic spawing/reducing of per-thread tapes for OpenMP
= Fully automatic checkpoint support (process spawning)

High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




CUDA Support via dco/map

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




dco/map = Meta Adjoint Programming
» Not just for CUDA, works with any C4++11 compiler
» Designed to work properly (high performance) on CUDA GPUs

» Completely separate from dco/c++, but easy to use with it

» Tool for tape-free adjoints

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




What's the problem with tape?
» Each thread needs its own tape
» 30,000 threads on GPU, only about 12GB RAM

» For GPU-intensive applications (XVA) highly likely to run out of
GPU memory if tape all floating point operations

> Tricky to have efficient tape in presence of warp divergence
(non-coalesced reads/writes)

» Taping will be much slower on GPU than recompute

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




dco/map designed to address this

> Is a tape-free operator overloading AD tool

» Uses meta-programming to let C++11 compiler write the
adjoint code at compile time

> Goal is to be as fast as hand-written discrete adjoint

= On CUDA we more or less achieve this
= On x86 we're not far off

> It's faster than tape on CPUs (typically quite a bit faster)

but dco/map is more demanding to use and requires more code
changes than dco/c++

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



dco/map

To use dco/map
» Functions must have void return type
> All function arguments passed by reference

» All intermediate LHS must have type const auto
> Variables may not be overwritten
= Linear overwriting handled automatically
= Non-linear overwrites can be handled but require user input
(storage)
» All control flow (conditionals, loops, function calls) must be
implemented with dco/map macros
= Macros just thin wrappers to factory methods, so nothing scary

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



template<class Active>
void foo(int n, const Active x[], Active &y)
4
// Intermediate LHS of type const auto
const auto a = sin(x[0])*x[1];

// Outputs of control flow statements
Active a, b(0), c, d;
// A for-loop with simple linear over-writing
MAP_FOR (Active, i, 2, n-1, 1) {
b += x[i];
} MAP_FOR_END;

// Call function bar to compute c
MAP_CALL (Active, bar(a, b, c));

// Use an if-statement to compute d
MAP_IF (Active, b < c) {
d = exp(a)*b;
} MAP_ELSE {
d = c*cos(b-a);
} MAP_IF_END;

y = d*c*bx*a;




int main()
{
using Active = dco_map::gals<double>::type;
int n = 10;
Active * x = new Activel[n];
// Populate x with data

// Declare output

Active y;

// Seed adjoint
dco_map::derivative(y) = 1;

foo(n, x, y);

// Read value

double v = dco_map::value(y);

// Read adjoint

double t dco_map::derivative( x[7] );




dco/map Features

dco/map has the following features/functionality
» First order tangent and adjoint (second order in development)

Produces single unified code for primal, tangent and adjoint

v

Primal as fast as non dco/map primal

ViV,

Specialised high-performance array types to handle race
conditions inherent in parallel adjoints

» Supports whole of C++11, cross platform
» API for storing things you don't want to recompute

> Easy integration with dco/c++ via external adjoint interface

dco/map currently in final stage client PoC for GPU XVA
application: GPU adjoint factor is 2.6x

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



Our Value Proposition

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com




NAG AD Value Proposition

» Industry leading AD consulting services
> Industry leading AD tools
= Speed
= Tape size
= Functionality and flexibility
» The only (commercial) solution that can handle CUDA

» Dedicated commercial support for all our AD products

Thank you

nag High Performance Computing Consulting | Numerical Algorithms | Software Engineering Services | www.nag.com



	NAG AD Library
	Consulting and Commercial Support for AD Tools
	dco/c++
	Using dco/c++: Tangent Mode
	Using dco/c++: Adjoint Mode
	Using dco/c++ with Handwritten Adjoints
	Checkpointing to Conserve Memory
	Additional dco/c++ Functionality
	CUDA Support via dco/map
	Our Value Proposition

