RWTHAACHEN

UNIVERSITY

The Art of Differentiating Computer Programs!

Algorithmic Differentiation — Why and How?

Uwe Naumann

Software and Tools for Computational Engineering
RWTH Aachen University, Germany
naumann@stce.rwth-aachen.de

and
The Numerical Algorithms Group Ltd. nag
Oxford, UK
Uwe.Naumann@nag.co.uk

1See also upcoming SIAM book

RWTHAACHEN

UNIVERSITY

s penatl, addepih 00000 5in 0000000095 2¢2lev] minimay=0.00101 / 18.6

MITgem, (EAPS, MIT)

in collaboration with ANL,
MIT, Rice, UColorado

Latitude

J. Utke, U.N. et al: OpenAD/F:
A modular, open-source tool for
automatic differentiation of Fortran
codes . ACM TOMS 34(4), 2008.

o

Plot: A finite difference approximation for 64,800 grid points at 1 min
each would keep us waiting for a month and a half ... -(((We can do it
in less than 10 minutes thanks to adjoints computed by a differentiated
version of the MITgem :-)

RWTHAACHEN

UNIVERSITY

Motivation
Algorithmic Differentiation (AD)

Race

AD in Action (Live)
Second and Higher Derivative Codes in Numerical Algorithms
AD in Action (Live)

>
>
>
» First Derivative Codes in Numerical Algorithms
>
>
>
» Conclusion and Challenges

Algorithmic Differentiation RWTHAACHEN

UNIVERSITY

First Derivative Codes

A,

STCE)

First Derivative Codes RWTHAACHEN
7 for F:R"—= R":y=F(x) UNIVERSITY

Tangent-Linear Code

y W =VFx)-x, xD eRrn y® e Rm

Approximate Tangent-Linear Code (Finite Differences)

y@ ~ F(x+ h-x) — F(x)
h

Adjoint Code

x1)=VFx)" yqy, x1 €R" yqy €R”

A,

(éT E\i Accumulation of Jacobian RWTHAACHEN

VFeR™" . UNIVERSITY

~ L

.. with machine accuracy at O(n) - Cost(F) by

y = VF(x)-x®) = cheap directional derivatives

... (poor?) approximation at O(n) - Cost(F) by

F(x+ h-x) - F(x)

F(x) - x) ~
VF(x) - x ;

.. with machine accuracy at O(m) - Cost(F) by

X(1) = VF(X)T ‘Ya) = cheap gradients

A,

(\§1'c E\) Race RWTHAACHEN

UNIVERSITY

Consider an implementation 2 of the pde-constrained optimization
problem min (., oy J(u, u°°s) where

J(u, u®>) = /Q (u(x7 T)— uc’bs(x))2 dx

subject to the viscous Burger's equation

ou 0w 1
ot Y ox T R ox2

with Reynolds number R = 1000, initial condition u(x,0), and boundary
condition u(x,t) =0 for x € T.

2Eugenia Kalnay: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge Uni Press, 2003.

A,

UNIVERSITY

(\§1'c E\) Race RWTHAACHEN

Solution requires the gradient of the Lagrangian
R > L(u,\) = o(u) = AT - c(v)

with discretized constraints c(u) and objective o(u).

» Lagrangian in f.c — t1_f.c (tangent-linear) and al_f.c (adjoint)
by derivative code compiler (dcc)
» drivers: Q =[0,1], T =1, 600 grid points, 7000 time steps
» tlmain.cpp: 600 calls of t1_f.cpp
» almain.cpp: 1 call of al_f.cpp

> g++ tlmain.cpp -o tlmain; time ./tl.main

will get back to this later ...

A,

STCE) Disclaimer RWTHAACHEN

UNIVERSITY

Algorithmic Differentiation (AD) delivers exact (up to machine accuracy)
first and higher derivatives of implementations of F : R" — R"™ as
computer programs.

or

We differentiate what you implemented — not what you possibly intended
to implement.

Assumption: The given implementation of F is d times continuously
differentiable at all points of interest.

Fact: AD (also know as Automatic Differentiation) is not fully automatic
and never will be except for simple cases.

(é:l'éE) Is it derivatives you want? RWTHAACHEN

UNIVERSITY

y = f(x) = x*> + 0.1 - sin(100 * x)

3 T
X**2+0.1*sin(100*x)
"tangentl.data” ---+--
"tangent2.data” ---x---
25 "tangent3.data” -

05 F + E

‘ ‘ ‘
L5 1 -05 0 05 1 15

RWTHAACHEN

UNIVERSITY

First Derivatives RWTHAACHEN

in Newton's Algorithm UNIVERSITY

Given: Implementation y = F(x) of the residual y € R" of a system of
nonlinear equations and a starting point x° € R”

Wanted: x* € R" such that F(x*) =0
Solution: Newton algorithm
KK = Xk |y - AK

The Newton step A¥ = — (VF(xk))_1 - VF(xK) is obtained as the
solution of the system of linear equations

VF(x¥) - Ak = —F(x¥)

at each iteration k =0,1,.... Matrix-free implementations are possible
if Krylov subspace methods (e.g. CG, GMRES depending on the
properties of VF(x)) are used (matrix-free preconditioners?).

— 7

(\gTC\E\) First Derivatives RWTHAACHEN

in Steepest Descent / BFGS UNIVERSITY

Given: Implementation y = F(x) of the objective y € R of a
unconstrained nonlinear programming problem

in F
o

Wanted: A minimizer x* € R".

Solution: As the simplest line search method steepest descent computes

iterates
x 1 = xk — Bk_1 - VF(x9)

from some suitable start value x° and with step length ay > 0 for
B, = 1 € R™". Convergence can be defined in various ways. The
computational effort is dominated by the evaluation of VF(x¥). Improved
quasi-Newton methods, such as BFGS, are also based on VF(x¥).

A,

(éT C E\i First Derivatives RWTHAACHEN

7> in the NAG Library UNIVERSITY

» systems of nonlinear equations (cO5ubc); user provides

void j_f(Integer n, const double x[],
double f[], double j[], ...);

» unconstrained nonlinear optimization (e04dgc); user provides

void g_f(Integer n, const double x[],
double *f, double g[], ...);

» unconstrained nonlinear least squares (e04gbc); user provides

void j_f(Integer m, Integer n, const double x[],
double f[], double j[], ...);

Back To The Race RWTHAACHEN

UNIVERSITY

» Gradient by tangent-linear Lagrangian took several minutes.
» Gradient by adjoint Lagrangian takes a few seconds

» g++ al main.cpp -o almain
» time ./almain

» diff tl.out al.out

» Adjoint for more complex problems / codes ... nontrivial :-)

RWTHAACHEN

UNIVERSITY

AD in Action

\ ‘ E\) Algorithmic Differentiation of RWTHAACHEN

F = o*_,F; where F; : R" — R™ UNIVERSITY

Forward Mode Reverse Mode
FF=1I...
y=F(x)=... i1
. L
‘ 1 | ‘
T
X 1 1§ FF=TI...

(FsoRoR)(x) A(F(F V) (F)T(R)TA) yu)

F! at Cost(F) F"at n-O(Cost(F)) F" at m- O(Cost(F))

A,

(\§1'c E\) elE RWTHAACHEN

UNIVERSITY

2
E.g., minimization of y = f(x) = <Z'7:_01 X-2) by Steepest Descent:

1 1

25

x4 ——
"sd.data" --—+--

L L L . L L L L
-2 -1.5 -1 -0.5 0 05 1 15 2

|Vf| < 107* after 9 iterations; |Vf| < 10710 after 1461997 iterations

Example RWTHAACHEN

UNIVERSITY

.. implemented as

void f(int n, doublex x, double& y) {
y=0;
for (int i=0;i<n;i++) y=y+x[i]*x[i];
y=Y*y.

}

Steepest Descent / BFGS require gradient to be computed by
» finite differences — O(n) - Cost(F)
» tangent-linear code — O(n) - Cost(F)
» adjoint code — O(1) - Cost(F)

RWTHAACHEN

UNIVERSITY

1. n=4

1.1 computation of gradient by finite differences
1.2 t1.f from f and computation of gradient
1.3 al_f from f and computation of gradient

2. n=5-10*
2.1 run times
2.2 (in)accuracy of finite differences

1st-Order Finite Differences RWTHAACHEN

UNIVERSITY

for (int i=0;i<n;i++) x[i]=cos((double) i);
f(n.x,y);
for (int i=0;i<n;i++) {

xph[i]+=h;

f(n,xph,yph);

xph[i]—=h;

cout << (yph—y)/h << endl;

— 7

-

(\gTCE\) 1st-Order Tangent-Linear Code ~ R\NTHAACHEN

UNIVERSITY

We transform the given implementation
void f(int n, doublex x, double& y)
of the function y = F(x) into tangent-linear code computing
y = F(x)
y = VF(x) - x(1)
The signature of the resulting tangent-linear subroutine becomes

void tl1_f(int n, doublex x, doublex tl_x,
double& y, double& tl_y)

— 7

-

(\gTCE\) 1st-Order Adjoint Code RWTHAACHEN

UNIVERSITY

We transform the given implementation
void f(int n, doublex x, double& y)

of the function y = F(x) into adjoint code computing
y = F(x)
x1) = (VF(x)" -ya)
The signature of the resulting adjoint subroutine becomes

void al_f(int n, doublex x, doublex al_x,
double& y, double al_y)

1st-Order Tangent-Linear Code RWTHAACHEN

UNIVERSITY

void tl_f(int n, doublex x, doublex tl_x,
double& y, double& tl_y) {
tl_y=0;
y=0;
for (int i=0;i<n;i++) {
tl_y=tl_y+2«x[i]*tl_x[i];
y=y+x[iJxx[i];

tl_y=2xyxtl_y;
Y=Yy *Yy,

Driver for R“THAACHEN

1st-Order Tangent-Linear Code UNIVERSITY

for (int i=0;i<n;i++) {
tl x[i]=1;
tl_f(n,x,tl.x,y, tl_y);
tl_x[i]=0;
cout << tl_y << endl;

}

1st-Order Adjoint Code RWTHAACHEN

UNIVERSITY

stack<double> required_double, result_double;

void al_f(int n, doublex x, doublex al_x,
double& y, double& al_y) {
y=0;
for (int i=0;i<n;i++) y=y+x[i]xx[i];
required _double . push(y);
Y=Yy
result_double.push(y);

y=required _double .top(); required_double.pop();
al_y=2xyxal_y;

for (int i=n—1;i>=0;i—) al_x[i]=2«x[i]*xal_y;
y=result_double.top(); result_double.pop();

Driver for R“THAACHEN

1st-Order Adjoint Code UNIVERSITY

al_y=1,
al_f(n,x,alx,y,al_y);
for (int i=0;i<n;i++) cout << al_x[i] << endl;

Observations RWTHAACHEN

UNIVERSITY

> n=4; g++ -03; h=10"8

v

runtime negligible
gvimdiff t1_4.out al_4.out :-)
gvimdiff fd_4.out tl1_4.out :-)

v

v

» n=5-10*

v

fd: 4.5s; t1: 6.0s; al: 0.15s
gvimdiff t1_50000.out al_50000.out :-)
gvimdiff £d_50000.out t1_50000.0ut :-(

v

v

(g (EE\\ Quality of Finite Differences
\\\ ‘—:’/’//

~—

fd

g[0]=99992.8
g[1]=54025.7
g[2]=—-41616
g[3]=-99003.3
g[4]=—65374.4
g[5]=28359.9
g[6]=96011.2
g[7]=75388
g[8]=—14543.5
g[9]=—-91111.7

n=5-10% h=10"°

tl/al

g[0]=100002
g[1]=54031.3
g[2]=—41615.5
g[3]=-99001.3
g[4]=—65365.7
g[5]=28366.8
g[6]=96019
g[7]=75391.8
g[8]=—14550.3
g[9]=—-91114.9

RWTHAACHEN

UNIVERSITY

RWTHAACHEN

UNIVERSITY

Higher Derivative Codes

T

(§T B Second Derivative Codes RWTHAACHEN

7 for fiR"—= Ry =f(x) UNIVERSITY

Second-Order Tangent-Linear Code

Y12 — @7 g2 (x) . xD)

Approximate Second-Order Tangent-Linear Code (Finite Differences)

F(x+ h-(x@ +xMD)) = F(x+ h-x®) = F(x + h-xD) + f(x)
h2

(12) o

y

Second-Order Adjoint Code

X3 = vy V2 (x) - %)

(S/T'C\E\) Accumulation of Hessian RWTHAACHEN

V2f e R™" .. UNIVERSITY

~— L

.. with machine accuracy at O(n?) - Cost(f) by

Y12 = x@T 92£(x) . x®

.. (even worse?) approximation at O(n?) - Cost(f) by

12) fx+h- (x@ 4+ xM)) — F(x + h-x@) = F(x + h-xD) + F(x)
~ -

y(

.. with machine accuracy at O(n) - Cost(f) by

xgg = yq) - V2f(x) - x()

— 7

(\gTC\E\) Second Derivatives RWTHAACHEN

in Newton's Algorithm UNIVERSITY

Given: Implementation y = F(x) of the objective y € R of an
unconstrained nonlinear programming problem

in F
A1, F0)

Wanted: A minimizer x* € R".

Solution: Newton algorithm is applied to find a stationary point of the
gradient VF(x) yielding the computation of iterates

XK = xk — - Bt VF(xF)

from some suitable start value x° and with step length ay > 0 for

By = V2F(xk) € R"™". The iterative approximation of the Newton step
using Krylov-subspace methods yields matrix-free implementations based
on a second-order adjoint model.

— 7

(\gTC\E\) Second Derivatives RWTHAACHEN

in Newton-Lagrange Algorithm UNIVERSITY

AL

Given: Equality-constrained nonlinear programming problem
min F(x) subject to ¢(x) =0

where both the objective F : R” — R and the constraints ¢ : R" — R
are assumed to be twice continuously differentiable.

Wanted: A feasible minimizer x* € R".

Solution: Many algorithms are based on the solution of the KKT system

VF(x) — (Ve(x))T - A

c(x) =0

using Newton algorithm.

— 7

(\gTC\E\) Second Derivatives RWTHAACHEN

in Newton-Lagrange Algorithm UNIVERSITY

AL

The iteration proceeds as

(X1, Akt1) = (Xk, Ak) + o - (Afa Az)(‘)

where the k-th Newton step is computed as the solution of the linear
system

Vxx L(Xi, Ak) —(VC(Xk))T} , [Af] _ [(VC(Xk))T')\k — VF(xk)
Ve(xk) 0 AR —c(xk)

Matrix-free implementations of Krylov-subspace methods compute the
residual of the constraints (c(x,)), tangent projections of the Hessian of
the Lagrangian (< VxxL(xk, Ak),v >), the gradient of the objective
(VF(xk)), and tangent and adjoint projections of the Jacobian of the
constraints (< Vc(xk),v > and < w, Vc(xg) >).

—T T

(éT C Ei Second Derivatives RWTHAACHEN

in the NAG Library UNIVERSITY

» unconstrained or bound-constrained minima of twice continuously
differentiable nonlinear functions (e04lbc); user provides

void g_f(Integer n, const double x[],
double xy, double g[], ...);

and

void h_(Integer n, const double x[],
double h[], ...);

— 7

-

(\gT E\) Higher Derivative Models RWTHAACHEN

\/ UNIVERSITY

Derivative models of k-th order are defined as tangent-linear or adjoint
models of derivative models of (k — 1)-th order.

Examples:

» Third-order tangent-linear model
FA23)(x, xM) x@) xB3)) = <« V3F(x),xP x?) xC) > x() e R

» Fourth-order adjoint model

F((lz),3,4) (x’ y(1)7 x(2) , x(3) , x(4)) =< y(1)7 v4 F(x)7 x(2)7 x(3)7 x(4) >

X(i) cR", Y1) eR™

Uncertainty Quantification RWTHAACHEN

by Moments Method UNIVERSITY

Given: y = F(x) with F: R — R (for notational simplicity) and
expected value py and variance oy of x.

Wanted: Estimates for expected value 1, and variance o, of y.

Solution: Method of Moments gives

F//
py = F(px) + (2NX) '0)2((approximate mean)

0'}2/ = F/(Nx)2 U>2< + F/(Nx) F”(Nx) Sx 0')3<
1 2
Z (FH(X)) (Kx —1) Ui

for given initial mean fi,, variance o2, skewness S,, and kurtosis K of
x € R. Approximation of hlgher—order moments is based on higher
derivatives. E.g., robust optimization.

(approximate variance)

Fourth Derivative Models R\NTHAACHEN

in Uncertainty Quantification UNIVERSITY

Given: Boundary-controlled PDE-constrained nonlinear programming
problem miny(s »y ser F(x) subject to c(x) = 0 with objective

Fx) = /Q (x(s.)~ x*(s)) s

(measured) initial condition x(s,0) and boundary condition x(s, t) for
sel.

Wanted: Quantification of uncertainties in solution (e.g.) wrt.
uncertainties in initial condition.

Solution: Second-order moments of the Newton-Lagrange algorithm
require derivatives of up to fourth order.

A,

(\§1'c E\) elE RWTHAACHEN

UNIVERSITY

2
E.g., minimization of y = f(x) = <Z'7:_01 X-2) by Newton's method

1 1

25

x4
“newton.data” --—+--

L L L b L L L
-2 -1.5 -1 -0.5 0 05 1 15 2

|VF| < 10=* after 7 iterations; |Vf| < 10710 after 22 iterations

(S/'/I"EE\) Example RWTHAACHEN

UNIVERSITY

.. implemented as

void f(int n, doublex x, double& y) {
y=0;
for (int i=0;i<n;i++) y=y+x[i]*x[i];
y=Y*y.

}

Newton’'s method requires gradient and Hessian to be computed by
» 2nd-order finite differences — O(n?) - Cost(F)
» 2nd-order tangent-linear code — O(n?) - Cost(F)
» 2nd-order adjoint code — O(n) - Cost(F)

RWTHAACHEN

UNIVERSITY

1. n=4
1.1 computation of Hessian by 2nd-order finite differences
1.2 t2_t1f from tl_f and computation of Hessian
1.3 t2_al_f from al_f and computation of Hessian

2. n=2000

2.1 run times
2.2 (in)accuracy of 2n-order finite differences

2nd-Order Finite Differences RWTHAACHEN

UNIVERSITY

const double h=le—6;
f(n.x,y);
for (int j=0;j<n;j++) {
for (int i=0;i<=j;i++) {
xphl[j]+=h; f(n,xphl,yphl); xphl[j]—-=h;
xph2[i]+=h; f(n,xph2,yph2); xph2[i]-=h;
xph3[j]+=h; xph3[i]+=h; f(n,xph3,yph3);
xph3[j]-=h; xph3[i]-=h;
cout << "h[" << j << """ < i << "]="
<< (yph3—yph2—yphl+4y)/(hxh) << endl;
}

cout << "g[" << j << "]=" << (yphl-y)/h << endl;

}

— 7

PN i T RWTHAACHEN
(\S\'\I'E:E) 2nd-Order Tangent-Linear Code UNIVERSITY

We transform tl_f into second-order tangent-linear code computing

y = F(x)
y? =< VF(x),x® >
yU =< VF(x),x®) >
y12) =< VF(x),x3?) > + < V2F(x),xM), x?) >

The signature of the second-order tangent-linear subroutine becomes

void t2_tl _f(int n, double xx, double *t2_x,
double *tl_x, double *t2_tl_x,
double &y, double &t2_y,
double &tl_y, double &t2_tl_y);

— 7

-

(\gTCE\) ond-Order Tangent-Linear Code ~IRWTHAACHEN

UNIVERSITY

void t2_tl_f(int n, doublex x, doublex t2_x,
doublex tl_x, doublex t2_tl_x,
double& y, double& t2_y,
double& tl_y, double& t2_tl_.y) {
t2_tl_y=0; tl_y=0; t2_y=0; y=0;
for (int i=0;i<n;i++) {
t2_tl_oy+=2«(t2_x[i]*tl_x[i]+x[i]*t2_t1_x[i]);
tl y+=2xx[i]xtl_x[i];
t2_y+=2xx[i]*xt2_x[i];
y+=x[i]*x[i];
}
t2_tl_y=2x(t2_yxtl_y+y*t2_tl_y);
tl_y=2xyxtl_y;
t2_y=2xyxt2_y;
Y=Y*Y,

A,

STcp) Driverfor RWTHAACHEN

~ L

2nd-Order Tangent-Linear Code UNIVERSITY

for (int j=0;j<n;j++) {

t2_x[j]=1;

for (int i=0;i<=j;i++) {
tl x[i]=1;
t2_tl1_f(n,x,t2_x,tl_x,t2_tl_x,

y,t2_y ,tly , t2_tl_y);
tl_x[i]=0;
cout << "h[" << j << "][" < i << "]="
<< t2_tl_y << endl;
}

t2_x[j]=0;
cout << "g[" << j << "]=" << t2.y << endl;

}

/f.-

~.

STCE 2nd-Order Adjoint Code RWTHAACHEN

UNIVERSITY

We transform al_f into second-order adjoint code computing

= F(x)
y® =< VF(x),x® >
X(1) = X))+ <Ya) VF(X) >

x@ _ () (2)
(1) ()+ < (1) VF(X) >4+ < y(l),VZF(X),X(2) >

The signature of the second-order adjoint subroutine becomes
void t2_al_f(int n, doublex x, doublex t2_x,
doublex al_x, doublex t2_al_x,

double& y, double& t2_y,
double al_y, double t2_al_y);

— 7 2nd-Order Adjoint Code RWTHAACHEN

(\S\IEE] Forward Section UNIVERSITY

void t2_al_f(int n, doublex x, doublex t2_x,
doublex al_x, doublex t2_al_x,
double& y, double& t2_y,
double al_y, double t2_al_.y) {
t2_y=0;
y=0;
for (int i=0;i<n;i++) {
t2_y+=2xx[i]xt2_x[i];
y+=x[i]*x[i];
}
t2_required_double.push(t2_y);
required _double . push(y);
t2_y=2xyxt2_y;
y=y*y,

2nd-Order Adjoint Code R\NTHAACHEN

Reverse Section UNIVERSITY

t2_y=t2_required_double.top();

t2_required_double.pop();

y=required_double .top();

required _double . pop();

t2_al_y=2%(t2_yxal_y+y*xt2_al_.y);

al_y=2xyxal_y;

for (int i=n—1;i>=0;i—) {
t2_al_x[i]+=2*(t2_x[i]*al_y+x[i]*xt2_al_y);
al x[i]+=2xx[i]*xal_y;

}

¥

Driver for R“THAACHEN

2nd-Order Adjoint Code UNIVERSITY

for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) {
x[i]=cos((double) i);
t2_,al_x[i]=t2_x[i]=al_x[i]=0;
¥
t2_,al_y=0; al_y=1; t2.x[j]=1;
t2_al_f(n,x,t2.x,alx,t2_al_x,
y,t2_y ,al_y,t2_al_y);
for (int i=0;i<=j;i++)
cout << "h[" << j << "][" < i << "]="
<< t2.al_x[i] << endl;
¥
for (int i=0;i<n;i++)
cout << "g[" << i << "]=" << alx[i] << endl;

Observations RWTHAACHEN

UNIVERSITY

> n=4; g++ -03; h=10"°

v

runtime negligible
gvimdiff t1_4.out al_4.out :-)
gvimdiff fd_4.out t1_4.out :-(

v

v

» n=103

sofd: 4.1s; t2_t1: 3.5s; t2_al: 1.4s
gvimdiff t2_t1_1000.out t2_al_1000.out :-)
gvimdiff sofd_1000.out t2_t1_1000.o0ut -((((

v

v

v

» n=2-103
sofd: 26.9s; t2_tl: 22.1s; t2_al: 5.7s

v

» n=3-103
» sofd: 85.2s; t2_tl: 69.7s; t2_al: 12.9s

] Quality of 2nd-order FD R\WNTHAACHEN

n = 2000, h = 10~ UNIVERSITY
sofd t2tl1/t2al
h[0][0]=3958.12 h[0][0]=4009.29
h[1][0]=0 h[1][0]=4.32242
h[1][1]=3958.12 h[1][1]=4003.63
h[2][0]=116.415 h[2][0]= —3.32917
h[2][1]=0 h[2][1]=—1.79876
h[2][2]=4190.95 h[2][2]=4002.68
h[3][0]=0 h[3][0]=—-7.91994
h[3][1]=116.415 h[3][1]=—4.27916
h[3][2]=232.831 h[3][2]=3.29586

h[3][3]=4074.54 h[3][3]=4009.13

UNIVERSITY

STCE) Summary RWTHAACHEN

You need algorithmic differentiation if
» finite differences cannot be trusted
» finite differences or exact forward sensitivities are too expensive

» you are un(able/willing) to build and solve the adjoint system
manually

For large (legacy) simulation codes you may have to invest
3,6,18,36
(wo)man months for sustained

runtime of adjoint

runtime of original simulation

of
50,20,< 10,< 4

— 7

-

(\gTCE\) Challenges and Conclusion RWTHAACHEN

UNIVERSITY

data flow reversal (checkpointing)
activation (templated code)
AD-specific program analysis

code complexity

vV v.v. v Y

mixed-language codes

» Develop with adjoints in mind!
» Know your AD developer!

» Know your (AD tool/) compiler!

