
The Art of Differentiating Computer Programs1

Algorithmic Differentiation – Why and How?

Uwe Naumann

Software and Tools for Computational Engineering
RWTH Aachen University, Germany
naumann@stce.rwth-aachen.de

and

The Numerical Algorithms Group Ltd.
Oxford, UK

Uwe.Naumann@nag.co.uk

1See also upcoming SIAM book

Motivation

MITgcm, (EAPS, MIT)

in collaboration with ANL,
MIT, Rice, UColorado

J. Utke, U.N. et al: OpenAD/F:

A modular, open-source tool for

automatic differentiation of Fortran

codes . ACM TOMS 34(4), 2008.

Plot: A finite difference approximation for 64,800 grid points at 1 min
each would keep us waiting for a month and a half ... :-(((We can do it
in less than 10 minutes thanks to adjoints computed by a differentiated
version of the MITgcm :-)

Plan

◮ Motivation

◮ Algorithmic Differentiation (AD)

◮ Race

◮ First Derivative Codes in Numerical Algorithms

◮ AD in Action (Live)

◮ Second and Higher Derivative Codes in Numerical Algorithms

◮ AD in Action (Live)

◮ Conclusion and Challenges

Algorithmic Differentiation

First Derivative Codes

First Derivative Codes

for F : IR
n → IR

m : y = F (x)

Tangent-Linear Code

y
(1) = ∇F (x) · x(1), x

(1) ∈ IR
n, y

(1) ∈ IR
m

Approximate Tangent-Linear Code (Finite Differences)

y
(1) ≈

F (x + h · x(1)) − F (x)

h

Adjoint Code

x(1) = ∇F (x)T · y(1), x(1) ∈ IR
n, y(1) ∈ IR

m

Accumulation of Jacobian

∇F ∈ IR
m×n ...

... with machine accuracy at O(n) · Cost(F) by

y
(1) = ∇F (x) · x(1) ⇒ cheap directional derivatives

... (poor?) approximation at O(n) · Cost(F) by

∇F (x) · x(1) ≈
F (x + h · x(1)) − F (x)

h

... with machine accuracy at O(m) · Cost(F) by

x(1) = ∇F (x)T · y(1) ⇒ cheap gradients

Race

Consider an implementation 2 of the pde-constrained optimization
problem minu(x ,0) J(u, uobs) where

J(u, uobs) ≡

∫

Ω

(

u(x ,T) − uobs(x)
)2

dx

subject to the viscous Burger’s equation

∂u

∂t
+ u ·

∂u

∂x
−

1

R
·
∂2u

∂x2
= 0

with Reynolds number R = 1000, initial condition u(x , 0), and boundary
condition u(x , t) = 0 for x ∈ Γ.

2Eugenia Kalnay: Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge Uni Press, 2003.

Race

Solution requires the gradient of the Lagrangian

IR ∋ L(u, λ) = o(u) − λT · c(u) .

with discretized constraints c(u) and objective o(u).

◮ Lagrangian in f.c → t1 f.c (tangent-linear) and a1 f.c (adjoint)
by derivative code compiler (dcc)

◮ drivers: Ω = [0, 1], T = 1, 600 grid points, 7000 time steps
◮ t1 main.cpp: 600 calls of t1 f.cpp
◮ a1 main.cpp: 1 call of a1 f.cpp

◮ g++ t1 main.cpp -o t1 main; time ./t1 main

will get back to this later ...

Disclaimer

Algorithmic Differentiation (AD) delivers exact (up to machine accuracy)
first and higher derivatives of implementations of F : IR

n → IR
m as

computer programs.

or

We differentiate what you implemented – not what you possibly intended
to implement.

Assumption: The given implementation of F is d times continuously
differentiable at all points of interest.

Fact: AD (also know as Automatic Differentiation) is not fully automatic
and never will be except for simple cases.

Is it derivatives you want?

y = f (x) = x2 + 0.1 · sin(100 ∗ x)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1.5 -1 -0.5 0 0.5 1 1.5

x**2+0.1*sin(100*x)
"tangent1.data"
"tangent2.data"
"tangent3.data"

Do derivatives exist?

21

1

2

−1

First Derivatives

in Newton’s Algorithm

Given: Implementation y = F (x) of the residual y ∈ IR
n of a system of

nonlinear equations and a starting point x
0 ∈ IR

n

Wanted: x
∗ ∈ IR

n such that F (x∗) = 0

Solution: Newton algorithm

x
k+1 = x

k + αk · ∆k .

The Newton step ∆k ≡ −
(

∇F (xk)
)−1

· ∇F (xk) is obtained as the
solution of the system of linear equations

∇F (xk) · ∆k = −F (xk)

at each iteration k = 0, 1, Matrix-free implementations are possible
if Krylov subspace methods (e.g. CG, GMRES depending on the
properties of ∇F (xk)) are used (matrix-free preconditioners?).

First Derivatives

in Steepest Descent / BFGS

Given: Implementation y = F (x) of the objective y ∈ IR of a
unconstrained nonlinear programming problem

min
x∈IR

n
F (x)

Wanted: A minimizer x
∗ ∈ IR

n.

Solution: As the simplest line search method steepest descent computes
iterates

x
k+1 = x

k − αk · B−1
k · ∇F (xk)

from some suitable start value x
0 and with step length αk > 0 for

Bk = I ∈ IR
n×n. Convergence can be defined in various ways. The

computational effort is dominated by the evaluation of ∇F (xk). Improved
quasi-Newton methods, such as BFGS, are also based on ∇F (xk).

First Derivatives

in the NAG Library

◮ systems of nonlinear equations (c05ubc); user provides

vo i d j f (I n t e g e r n , con s t doub l e x [] ,
doub l e f [] , doub l e j [] , . . .) ;

◮ unconstrained nonlinear optimization (e04dgc); user provides

vo i d g f (I n t e g e r n , con s t doub l e x [] ,
doub l e ∗ f , doub l e g [] , . . .) ;

◮ unconstrained nonlinear least squares (e04gbc); user provides

vo i d j f (I n t e g e r m, I n t e g e r n , con s t doub l e x [] ,
doub l e f [] , doub l e j [] , . . .) ;

Back To The Race

◮ Gradient by tangent-linear Lagrangian took several minutes.

◮ Gradient by adjoint Lagrangian takes a few seconds
◮ g++ a1 main.cpp -o a1 main
◮ time ./a1 main

◮ diff t1.out a1.out

◮ Adjoint for more complex problems / codes ... nontrivial :-)

AD in Action

Algorithmic Differentiation of

F = ◦k
i=1Fi where Fi : IR

ni → IR
mi

Forward Mode Reverse Mode

x

y = F (x) = . . .

F1

F2

F3

1
1

1
1

F ′ =
∏

. . .

F ′

1

F ′

2

F ′

3

1
1

F ′ =
∏

. . .

F ′

1

F ′

2

F ′

3

(F3 ◦ F2 ◦ F1)(x) F ′

3(F
′

2(F
′

1 · x
(1))) (F ′

1)
T ((F ′

2)
T ((F ′

3)
T · y(1)))

F ′

i at Cost(F) F ′ at n · O(Cost(F)) F ′ at m · O(Cost(F))

Example

E.g., minimization of y = f (x) =
(

∑n−1
i=0 x2

i

)2
by Steepest Descent:

 0

 5

 10

 15

 20

 25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x**4
"sd.data"

|∇f | < 10−4 after 9 iterations; |∇f | < 10−10 after 1461997 iterations

Example

... implemented as

vo i d f (i n t n , doub l e ∗ x , doub l e& y) {
y=0;
f o r (i n t i =0; i<n ; i++) y=y+x [i]∗ x [i] ;
y=y∗y ;

}

Steepest Descent / BFGS require gradient to be computed by

◮ finite differences → O(n) · Cost(F)

◮ tangent-linear code → O(n) · Cost(F)

◮ adjoint code → O(1) · Cost(F)

Live

1. n = 4

1.1 computation of gradient by finite differences
1.2 t1 f from f and computation of gradient
1.3 a1 f from f and computation of gradient

2. n = 5 · 104

2.1 run times
2.2 (in)accuracy of finite differences

1st-Order Finite Differences

. . .
f o r (i n t i =0; i<n ; i++) x [i]= cos ((doub l e) i) ;
f (n , x , y) ;
f o r (i n t i =0; i<n ; i++) {

xph [i]+=h ;
f (n , xph , yph) ;
xph [i]−=h ;
cout << (yph−y)/ h << end l ;

}
. . .

1st-Order Tangent-Linear Code

We transform the given implementation

vo i d f (i n t n , doub l e ∗ x , doub l e& y)

of the function y = F (x) into tangent-linear code computing

y = F (x)

y
(1) = ∇F (x) · x(1) .

The signature of the resulting tangent-linear subroutine becomes

vo i d t 1 f (i n t n , doub l e ∗ x , doub l e ∗ t1 x ,
doub l e& y , doub l e& t1 y) .

1st-Order Adjoint Code

We transform the given implementation

vo i d f (i n t n , doub l e ∗ x , doub l e& y)

of the function y = F (x) into adjoint code computing

y = F (x)

x(1) = (∇F (x))T · y(1) .

The signature of the resulting adjoint subroutine becomes

vo i d a 1 f (i n t n , doub l e ∗ x , doub l e ∗ a1 x ,
doub l e& y , doub l e a1 y) .

1st-Order Tangent-Linear Code

vo i d t 1 f (i n t n , doub l e ∗ x , doub l e ∗ t1 x ,
doub l e& y , doub l e& t1 y) {

t 1 y =0;
y=0;
f o r (i n t i =0; i<n ; i++) {

t 1 y=t1 y+2∗x [i]∗ t 1 x [i] ;
y=y+x [i]∗ x [i] ;

}
t 1 y=2∗y∗ t 1 y ;
y=y∗y ;

}

Driver for

1st-Order Tangent-Linear Code

. . .
f o r (i n t i =0; i<n ; i++) {

t 1 x [i]=1;
t 1 f (n , x , t1 x , y , t 1 y) ;
t 1 x [i]=0;
cout << t 1 y << end l ;

}
. . .

1st-Order Adjoint Code

s tack<double> r e q u i r e d d ou b l e , r e s u l t d o u b l e ;

vo i d a 1 f (i n t n , doub l e ∗ x , doub l e ∗ a1 x ,
doub l e& y , doub l e& a1 y) {

y=0;
f o r (i n t i =0; i<n ; i++) y=y+x [i]∗ x [i] ;
r e q u i r e d d ou b l e . push (y) ;
y=y∗y ;
r e s u l t d o u b l e . push (y) ;

y=r e q u i r e d d ou b l e . top () ; r e q u i r e d d ou b l e . pop () ;
a1 y=2∗y∗ a1 y ;
f o r (i n t i=n−1; i >=0; i −−) a1 x [i]=2∗ x [i]∗ a1 y ;
y=r e s u l t d o u b l e . top () ; r e s u l t d o u b l e . pop () ;

}

Driver for

1st-Order Adjoint Code

. . .
a1 y =1;
a 1 f (n , x , a1 x , y , a1 y) ;
f o r (i n t i =0; i<n ; i++) cout << a1 x [i] << end l ;
. . .

Observations

◮ n = 4; g++ -O3; h = 10−8

◮ runtime negligible
◮ gvimdiff t1_4.out a1_4.out :-)
◮ gvimdiff fd_4.out t1_4.out :-)

◮ n = 5 · 104

◮ fd: 4.5s; t1: 6.0s; a1: 0.15s
◮ gvimdiff t1_50000.out a1_50000.out :-)
◮ gvimdiff fd_50000.out t1_50000.out :-(

Quality of Finite Differences

n = 5 · 104
, h = 10−8

fd t1/a1

g [0]=99992.8
g [1]=54025.7
g [2]=−41616
g [3]=−99003.3
g [4]=−65374.4
g [5]=28359.9
g [6]=96011.2
g [7]=75388
g [8]=−14543.5
g [9]=−91111.7
. . .

g [0]=100002
g [1]=54031.3
g [2]= −41615.5
g [3]= −99001.3
g [4]= −65365.7
g [5]=28366.8
g [6]=96019
g [7]=75391.8
g [8]= −14550.3
g [9]= −91114.9
. . .

Higher Derivative Codes

Second Derivative Codes

for f : IR
n → IR : y = f (x)

Second-Order Tangent-Linear Code

y (1,2) = x
(2)T · ∇2f (x) · x(1)

Approximate Second-Order Tangent-Linear Code (Finite Differences)

y (1,2) ≈
f (x + h · (x(2) + x

(1))) − f (x + h · x(2)) − f (x + h · x(1)) + f (x)

h2

Second-Order Adjoint Code

x
(2)
(1) = y(1) · ∇

2f (x) · x(2)

Accumulation of Hessian

∇2f ∈ IR
n×n ...

... with machine accuracy at O(n2) · Cost(f) by

y (1,2) = x
(2)T · ∇2f (x) · x(1)

... (even worse?) approximation at O(n2) · Cost(f) by

y (1,2) ≈
f (x + h · (x(2) + x

(1))) − f (x + h · x(2)) − f (x + h · x(1)) + f (x)

h2

... with machine accuracy at O(n) · Cost(f) by

x
(2)
(1) = y(1) · ∇

2f (x) · x(2)

Second Derivatives

in Newton’s Algorithm

Given: Implementation y = F (x) of the objective y ∈ IR of an
unconstrained nonlinear programming problem

min
x∈IR

n
F (x)

Wanted: A minimizer x
∗ ∈ IR

n.

Solution: Newton algorithm is applied to find a stationary point of the
gradient ∇F (x) yielding the computation of iterates

x
k+1 = x

k − αk · B−1
k · ∇F (xk)

from some suitable start value x
0 and with step length αk > 0 for

Bk = ∇2F (xk) ∈ IR
n×n. The iterative approximation of the Newton step

using Krylov-subspace methods yields matrix-free implementations based
on a second-order adjoint model.

Second Derivatives

in Newton-Lagrange Algorithm

Given: Equality-constrained nonlinear programming problem

min F (x) subject to c(x) = 0

where both the objective F : IR
n → IR and the constraints c : IR

n → IR
m

are assumed to be twice continuously differentiable.

Wanted: A feasible minimizer x
∗ ∈ IR

n.

Solution: Many algorithms are based on the solution of the KKT system

[

∇F (x) − (∇c(x))T · λ
c(x)

]

= 0

using Newton algorithm.

Second Derivatives

in Newton-Lagrange Algorithm

The iteration proceeds as

(xk+1, λk+1) = (xk , λk) + αk · (∆x
k ,∆λ

k)

where the k-th Newton step is computed as the solution of the linear
system

[

∇xxL(xk , λk) −(∇c(xk))T

∇c(xk) 0

]

·

[

∆x
k

∆λ
k

]

=

[

(∇c(xk))T · λk −∇F (xk)
−c(xk)

]

Matrix-free implementations of Krylov-subspace methods compute the
residual of the constraints (c(xk)), tangent projections of the Hessian of
the Lagrangian (< ∇xxL(xk , λk), v >), the gradient of the objective
(∇F (xk)), and tangent and adjoint projections of the Jacobian of the
constraints (< ∇c(xk), v > and < w,∇c(xk) >).

Second Derivatives

in the NAG Library

◮ unconstrained or bound-constrained minima of twice continuously
differentiable nonlinear functions (e04lbc); user provides

vo i d g f (I n t e g e r n , con s t doub l e x [] ,
doub l e ∗y , doub l e g [] , . . .) ;

and

vo i d h (I n t e g e r n , con s t doub l e x [] ,
doub l e h [] , . . .) ;

Higher Derivative Models

Derivative models of k-th order are defined as tangent-linear or adjoint
models of derivative models of (k − 1)-th order.

Examples:

◮ Third-order tangent-linear model

F (1,2,3)(x, x(1), x(2), x(3)) = < ∇3F (x), x(1), x(2), x(3) >, x
(i) ∈ IR

n

◮ Fourth-order adjoint model

F
(2,3,4)
(1) (x, y(1), x

(2), x(3), x(4)) = < y(1),∇
4F (x), x(2), x(3), x(4) >

x
(i) ∈ IR

n, y(1) ∈ IR
m

Uncertainty Quantification

by Moments Method

Given: y = F (x) with F : IR → IR (for notational simplicity) and
expected value µx and variance σx of x .

Wanted: Estimates for expected value µy and variance σy of y .

Solution: Method of Moments gives

µy = F (µx) +
F ′′(µx)

2
· σ2

x (approximate mean)

σ2
y = F ′(µx)

2 σ2
x + F ′(µx)F ′′(µx)Sx σ3

x

+
1

4

(

F ′′(µx)
)2

(Kx − 1)σ4
x

(approximate variance)

for given initial mean µx , variance σ2
x , skewness Sx , and kurtosis Kx of

x ∈ IR. Approximation of higher-order moments is based on higher
derivatives. E.g., robust optimization.

Fourth Derivative Models

in Uncertainty Quantification

Given: Boundary-controlled PDE-constrained nonlinear programming
problem minx(s,t), s∈Γ F (x) subject to c(x) = 0 with objective

F (x) =

∫

Ω

(

x(s,T) − x
obs(s)

)2
ds ,

(measured) initial condition x(s, 0) and boundary condition x(s, t) for
s ∈ Γ.

Wanted: Quantification of uncertainties in solution (e.g.) wrt.
uncertainties in initial condition.

Solution: Second-order moments of the Newton-Lagrange algorithm
require derivatives of up to fourth order.

Example

E.g., minimization of y = f (x) =
(

∑n−1
i=0 x2

i

)2
by Newton’s method

 0

 5

 10

 15

 20

 25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x**4
"newton.data"

|∇f | < 10−4 after 7 iterations; |∇f | < 10−10 after 22 iterations

Example

... implemented as

vo i d f (i n t n , doub l e ∗ x , doub l e& y) {
y=0;
f o r (i n t i =0; i<n ; i++) y=y+x [i]∗ x [i] ;
y=y∗y ;

}

Newton’s method requires gradient and Hessian to be computed by

◮ 2nd-order finite differences → O(n2) · Cost(F)

◮ 2nd-order tangent-linear code → O(n2) · Cost(F)

◮ 2nd-order adjoint code → O(n) · Cost(F)

Live

1. n = 4

1.1 computation of Hessian by 2nd-order finite differences
1.2 t2 t1 f from t1 f and computation of Hessian
1.3 t2 a1 f from a1 f and computation of Hessian

2. n = 2000

2.1 run times
2.2 (in)accuracy of 2n-order finite differences

2nd-Order Finite Differences

con s t doub l e h=1e−6;
f (n , x , y) ;
f o r (i n t j =0; j<n ; j++) {

f o r (i n t i =0; i<=j ; i++) {
xph1 [j]+=h ; f (n , xph1 , yph1) ; xph1 [j]−=h ;
xph2 [i]+=h ; f (n , xph2 , yph2) ; xph2 [i]−=h ;
xph3 [j]+=h ; xph3 [i]+=h ; f (n , xph3 , yph3) ;
xph3 [j]−=h ; xph3 [i]−=h ;
cout << ”h [” << j << ”] [” << i << ”]=”

<< (yph3−yph2−yph1+y)/(h∗h) << end l ;
}
cout << ”g [” << j << ”]=” << (yph1−y)/ h << end l ;

}

2nd-Order Tangent-Linear Code

We transform t1 f into second-order tangent-linear code computing

y = F (x)

y
(2) =< ∇F (x), x(2) >

y
(1) =< ∇F (x), x(1) >

y
(1,2) =< ∇F (x), x(1,2) > + < ∇2F (x), x(1), x(2) > .

The signature of the second-order tangent-linear subroutine becomes

vo i d t 2 t 1 f (i n t n , doub l e ∗x , doub l e ∗ t2 x ,
doub l e ∗ t1 x , doub l e ∗ t 2 t 1 x ,
doub l e &y , doub l e &t2 y ,
doub l e &t1 y , doub l e &t 2 t 1 y) ;

2nd-Order Tangent-Linear Code

vo i d t 2 t 1 f (i n t n , doub l e ∗ x , doub l e ∗ t2 x ,
doub l e ∗ t1 x , doub l e ∗ t 2 t 1 x ,
doub l e& y , doub l e& t2 y ,
doub l e& t1 y , doub l e& t 2 t 1 y) {

t 2 t 1 y =0; t 1 y =0; t 2 y =0; y=0;
f o r (i n t i =0; i<n ; i++) {

t 2 t 1 y +=2∗(t 2 x [i]∗ t 1 x [i]+x [i]∗ t 2 t 1 x [i]) ;
t 1 y+=2∗x [i]∗ t 1 x [i] ;
t 2 y+=2∗x [i]∗ t 2 x [i] ;
y+=x [i]∗ x [i] ;

}
t 2 t 1 y =2∗(t 2 y ∗ t 1 y+y∗ t 2 t 1 y) ;
t 1 y=2∗y∗ t 1 y ;
t 2 y=2∗y∗ t 2 y ;
y=y∗y ;

}

Driver for

2nd-Order Tangent-Linear Code

. . .
f o r (i n t j =0; j<n ; j++) {

t 2 x [j]=1;
f o r (i n t i =0; i<=j ; i++) {

t 1 x [i]=1;
t 2 t 1 f (n , x , t2 x , t1 x , t 2 t 1 x ,

y , t2 y , t1 y , t 2 t 1 y) ;
t 1 x [i]=0;
cout << ”h [” << j << ”] [” << i << ”]=”

<< t 2 t 1 y << end l ;
}
t 2 x [j]=0;
cout << ”g [” << j << ”]=” << t 2 y << end l ;

}
. . .

2nd-Order Adjoint Code

We transform a1 f into second-order adjoint code computing

y = F (x)

y
(2) =< ∇F (x), x(2) >

x(1) = x(1)+ < y(1),∇F (x) >

x
(2)
(1) = x

(2)
(1)+ < y

(2)
(1),∇F (x) > + < y(1),∇

2F (x), x(2) > .

The signature of the second-order adjoint subroutine becomes

vo i d t 2 a 1 f (i n t n , doub l e ∗ x , doub l e ∗ t2 x ,
doub l e ∗ a1 x , doub l e ∗ t 2 a1 x ,
doub l e& y , doub l e& t2 y ,
doub l e a1 y , doub l e t 2 a 1 y) ;

2nd-Order Adjoint Code

Forward Section

vo i d t 2 a 1 f (i n t n , doub l e ∗ x , doub l e ∗ t2 x ,
doub l e ∗ a1 x , doub l e ∗ t 2 a1 x ,
doub l e& y , doub l e& t2 y ,
doub l e a1 y , doub l e t 2 a 1 y) {

t 2 y =0;
y=0;
f o r (i n t i =0; i<n ; i++) {

t 2 y+=2∗x [i]∗ t 2 x [i] ;
y+=x [i]∗ x [i] ;

}
t 2 r e q u i r e d d o u b l e . push (t 2 y) ;
r e q u i r e d d ou b l e . push (y) ;
t 2 y=2∗y∗ t 2 y ;
y=y∗y ;

2nd-Order Adjoint Code

Reverse Section

t 2 y=t 2 r e q u i r e d d o u b l e . top () ;
t 2 r e q u i r e d d o u b l e . pop () ;
y=r e q u i r e d d ou b l e . top () ;
r e q u i r e d d ou b l e . pop () ;
t 2 a 1 y =2∗(t 2 y ∗ a1 y+y∗ t 2 a 1 y) ;
a1 y=2∗y∗ a1 y ;
f o r (i n t i=n−1; i >=0; i −−) {

t 2 a 1 x [i]+=2∗(t 2 x [i]∗ a1 y+x [i]∗ t 2 a 1 y) ;
a1 x [i]+=2∗x [i]∗ a1 y ;

}
}

Driver for

2nd-Order Adjoint Code

. . .
f o r (i n t j =0; j<n ; j++) {

f o r (i n t i =0; i<n ; i++) {
x [i]= cos ((doub l e) i) ;
t 2 a 1 x [i]= t 2 x [i]= a1 x [i]=0;

}
t 2 a 1 y =0; a1 y =1; t 2 x [j]=1;
t 2 a 1 f (n , x , t2 x , a1 x , t 2 a1 x ,

y , t2 y , a1 y , t 2 a 1 y) ;
f o r (i n t i =0; i<=j ; i++)

cout << ”h [” << j << ”] [” << i << ”]=”
<< t 2 a 1 x [i] << end l ;

}
f o r (i n t i =0; i<n ; i++)

cout << ”g [” << i << ”]=” << a1 x [i] << end l ;
. . .

Observations

◮ n = 4; g++ -O3; h = 10−6

◮ runtime negligible
◮ gvimdiff t1_4.out a1_4.out :-)
◮ gvimdiff fd_4.out t1_4.out :-(

◮ n = 103

◮ sofd: 4.1s; t2 t1: 3.5s; t2 a1: 1.4s
◮ gvimdiff t2_t1_1000.out t2_a1_1000.out :-)
◮ gvimdiff sofd_1000.out t2_t1_1000.out :-((((

◮ n = 2 · 103

◮ sofd: 26.9s; t2 t1: 22.1s; t2 a1: 5.7s

◮ n = 3 · 103

◮ sofd: 85.2s; t2 t1: 69.7s; t2 a1: 12.9s

Quality of 2nd-order FD

n = 2000, h = 10−6

sofd t2t1/t2a1

h [0] [0]=3958 . 12
h [1] [0]=0
h [1] [1]=3958 . 12
h [2] [0]=116 . 4 15
h [2] [1]=0
h [2] [2]=4190 . 95
h [3] [0]=0
h [3] [1]=116 . 4 15
h [3] [2]=232 . 8 31
h [3] [3]=4074 . 54
. . .

h [0] [0]=4009 . 2 9
h [1] [0]=4 . 322 42
h [1] [1]=4003 . 6 3
h [2] [0]= −3.32917
h [2] [1]= −1.79876
h [2] [2]=4002 . 6 8
h [3] [0]= −7.91994
h [3] [1]= −4.27916
h [3] [2]=3 . 295 86
h [3] [3]=4009 . 1 3
. . .

Summary

You need algorithmic differentiation if

◮ finite differences cannot be trusted

◮ finite differences or exact forward sensitivities are too expensive

◮ you are un(able/willing) to build and solve the adjoint system
manually

For large (legacy) simulation codes you may have to invest

3, 6, 18, 36

(wo)man months for sustained

runtime of adjoint

runtime of original simulation

of
50, 20, < 10, < 4

Challenges and Conclusion

◮ data flow reversal (checkpointing)

◮ activation (templated code)

◮ AD-specific program analysis

◮ code complexity

◮ mixed-language codes

◮ Develop with adjoints in mind!

◮ Know your AD developer!

◮ Know your (AD tool/) compiler!

