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Adjoint Algorithmic Differentiation is one of the principal innovations in risk management of the
recent times. In this paper we show how this technique can be used to compute real time risk for
credit products.
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Introduction

The aftermath of the recent financial crisis has seen
a dramatic shift in the credit derivatives markets, with
a conspicuous reduction of demand for complex, capi-
tal intensive products, like bespoke collateralized debt
obligations (CDO), and a renewed focus on simpler and
more liquid derivatives, like credit default indices and
swaptions.

In this background, dealers are quickly adapting to
a business model geared towards high-volume, lower-
margin products for which managing efficiently the trad-
ing inventory is of paramount importance. As a result,
the ability to produce risk in real time is rapidly be-
coming one of the keys to running a successful trading
operation.

A recently introduced technology for real time risk is
Adjoint Algorithmic Differentiation (AAD) (Capriotti,
2011; Capriotti and Giles, 2010, 2012). This powerful
technique allows the fast computation of risk without the
necessity of repeating the valuation of the portfolio mul-
tiple times as in traditional bump and reval (or bump-
ing) approaches. In contrast to computational solutions
based on parallel architectures like GPUs and FPGAs,
AAD does not require investments in new infrastructure
or additional computational resources. Rather, AAD is
a straightforward mathematical technique that can be
easily implemented and integrated in existing analytics
software.

The remarkable efficacy of AAD was recently demon-
strated in a variety of risk management problems in the
context of highly time consuming Monte Carlo valua-
tions, including counterparty credit management (Capri-
otti et al., 2011). In this paper, we demonstrate how
this technique can be extremely effective also for simpler
credit products, typically valued by means of faster semi
analytical techniques. We will show how AAD provides
orders of magnitude savings in computational time and
makes the computation of risk in real time - with no ad-
ditional infrastructure investment - a concrete possibility.

Pricing of Credit Derivatives

The key concept for the valuation of credit derivatives,
in the context of the models generally used in practice,
is the hazard rate, λu, representing the probability of
default of the reference entity between times u and u+du,
conditional on survival up to time u. By modelling the
default event of a reference entity i as the first arrival time
of a Poisson process with deterministic intensity λiu, the
survival probability, Qi(t, T ), is given by

Q(t, T ;λi) = exp

[
−
∫ T

t

du λiu

]
. (1)

In the hazard rate framework, the price of a credit
derivative can be expressed mathematically as

V (θ) = V (λ(θ), θ) , (2)

where, λ = (λ1, . . . , λN ) are the hazard rate functions
for N credit entities referenced in a given contract. Here
we have indicated generically with θ = (θ1, . . . , θNθ ) the
vector of model parameters, e.g., credit spreads, recovery
rates, volatilities, correlation and the market prices of the
interest rate instruments used for the calibration of the
discount curve.

In general, the valuation of a credit derivative can be
separated in a

Calibration Step :

θ → λ(θ)

for the construction of the hazard rate curve given liq-
uidly traded CDS prices, a term structure of recoveries
and a given discount curve, and a

Pricing Step :

θ → V (λ(θ), θ)

mapping the hazard rate curves and the other parameters
to which the pricing model is explicitly dependent on, to
the price of the credit derivative. The pricing step is ob-
viously specific to the particular credit derivative under
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valuation. Instead, the calibration step is the same for
any derivative priced within the hazard rate framework.
For the purpose of the discussion below it is useful to re-
call the main steps involved in the calibration of a hazard
rate curve.

Calibration step

The hazard rate function λu in Eq. (1) is commonly
parameterized as piece-wise constant with M knot points
at time (t1, . . . , tM ), λ = (λ1, . . . , λM ), such that

λu = λn−1 =
1

tn − tn−1
ln

(
Q(t, tn−1;λ)

Q(t, tn;λ)

)
for tn−1 ≤ u < tn and t0 equal to the valuation date.
In the calibration step, the hazard rate knot points are
calibrated from the price, or equivalently the credit (par)
spreads (s1, . . . , sM ), of a set of liquidly traded CDS with
maturities T1, . . . , TM e.g., using the standard bootstrap
algorithm (O’Kane, 2011).

Such calibration can be expressed mathematically as
solving a system of M equations

Gj(λ, θ) = 0 , (3)

j = 1, . . .M , with

Gj(λ, θ) = sj −
L(t, Tj ;λ, θ)

A(t, Tj ;λ, θ)
, (4)

where L(t, Tj ;λ, θ) and A(t, Tj ;λ, θ) are, respectively, the
expected loss and credit risky annuity for a Tj maturity
CDS contract starting at time t1. These are defined as

L(t, T ;λ, θ) =∫ T

t

du Z(t, u; θ) (1−Ru)

(
−dQ(t, u;λ)

du

)
, (5)

and (e.g., for continuously paid coupons)

A(t, T ;λ, θ) =

∫ T

t

du Z(t, u; θ)Q(t, u;λ) . (6)

Here, Z(t, u; θ) is the discount factor from time t to time
u, Q(t, u;λ) (resp. −dQ(t, u;λ)/du) is the probability
that the reference entity survives up to (resp. defaults
in an infinitesimal interval around) time u, and Ru is
the expected percentage recovery upon default at time u.
The latter is generally expressed as a piecewise constant
function with the same discretization of the hazard rate
function, say R = (R1, . . . , RM ).

1 Note that although the credit spreads sj are contained in the
model parameter vector θ the risky annuity and the expected
loss do not depend explicitly on them.

The calibration equations (3) and (4) are based on the
definition of par spread si as break-even coupons c mak-
ing the value of CDS

VCDS(t, T ; θ) = L(t, T ;λ, θ)− cA(t, T ;λ, θ), (7)

worth zero2. Since both the expected loss and the risky
annuity at time Ti depend on hazard rate points λj with
j ≤ i, the calibration equations can be solved iteratively
starting from i = 1, by keeping fixed the hazard rate knot
points λj with j < i, and solving for λi.

Through the calibration process, the system of M
equations (3) defines implicitly the function λ = λ(θ),
linking the hazard rate to the credit spreads, the term
structure of expected recovery and the discount factors.
These are in turn a function of the market instruments
that are used for the calibration of the discount curve.

Challenges in the Calculation of Credit Risk

The computation of the sensitivities of the price of the
credit derivative (2) with respect to the model parame-
ters θ can be performed by means of the chain rule

∂V

∂θk
=
∂V

∂θk
+

M∑
j=1

∂V

∂λj

∂λj
∂θk

, (8)

where the first term captures the explicit dependence on
the model parameters θ through the pricing step, and
the second term captures the implicit dependence via the
calibration step.

The computation of the calibration component of the
prices sensitivities with standard bump and reval ap-
proaches is particularly onerous because it involves re-
peating the calibration step for each perturbation. Espe-
cially for portfolio of simple credit derivatives, like CDS,
this can easily represent the bulk of the computational
burden. In addition, finite-size perturbations of credit
spreads, recovery or interest rates often correspond to
inputs that do no admit an arbitrage-free representation
in terms of a non-negative hazard rate curve, thus making
the robust and stable computation of sensitivities chal-
lenging.

2 Note that since the standardization of CDS contracts in 2008,
liquidly traded CDS are characterized by a standard coupon and
are generally quoted in terms of upfronts or quote spreads. Both
mark types can be mapped to a dollar value of a CDS contract
by means of a market standard parameterization (ISDA, 2013),
and hazard rates can be equivalently bootstrapped from these
marks using Eq. (7). Credit (par) spreads remain nonetheless
commonly used in the market practice as risk factors for credit
derivatives. The analysis of this paper can be easily formulated
in terms of quote spreads or upfronts.
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Adjoint Calculation of Risk

Both the computational costs and stability of the cal-
culation of credit risk can be effectively addressed by
means of the AAD implementation of the chain rule (8).
In particular, the adjoint of the algorithm consisting of
the Calibration Step and Pricing Step, described above
reads

Pricing Step :

θ̄k = V̄
∂V

∂θk
λ̄j = V̄

∂V

∂λj
, (9)

Calibration Step :

θ̄k = θ̄k +

M∑
j=1

λ̄j
∂λj
∂θk

. (10)

Here we have used the standard ‘bar’ notation to indicate
adjoint variables and adjoint functions. In particular, we
recall that, given a function

Y = Y (X) , (11)

mapping a vector X in Rn in a vector Y in Rm through
a sequence of steps

X → . . . → U → W → . . . → Y ,

where the real vectors U and W represent intermediate
variables used in the calculation, its adjoint counterpart
reads

X̄ = Y (X, Ȳ ) , (12)

where the adjoint of the output Ȳ is an arbitrary vector
in Rm and the adjoint of the input X̄, is given by

X̄i =

m∑
j=1

Ȳj
∂Yj
∂Xi

, (13)

with i = 1, . . . , n. Note that the vector Ȳ allows one
to select a specific linear combination of the rows of the
Jacobian ∂Yj/∂Xi with respect to which derivatives are
computed. In the case of scalar function, Ȳ is a scalar
that can be set to one3.

The adjoint function (12) can be implemented by re-
versing the order of the computations in the original func-
tion as

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ ,

3 It is worth noting that, as customary in elementary calculus, the
same symbol Y is used for both the output of the function and
the function itself. Similarly, the same symbol Ȳ is used for both
the adjoint function and the adjoint input, as customary in the
adjoint literature.

where the adjoint of any intermediate variable Uk is de-
fined as

Ūk =

m∑
j=1

Ȳj
∂Yj
∂Uk

.

The key theoretical result is that, given a computer pro-
gram performing some high-level function (11), the exe-
cution time of its adjoint counterpart (12) calculating the
linear combination (13) is bounded by approximatively 4
times the cost of execution of the original one (Capriotti
and Giles, 2012).

Given the definitions above, it is immediate to verify
that for V̄ = 1, each θ̄k computed by means of the adjoint
of the pricing and calibration steps, Eqs. (9) and (10),
gives the price sensitivity in Eq. (8).

Although in the following we will give explicit exam-
ples of the adjoint of the pricing step for portfolios of CDS
and credit default index swaptions, here we focus our dis-
cussion on the adjoint of the calibration step in Eq. (10)
which is a time consuming and numerically challenging
step common to all pricing applications within the hazard
rate framework.

Implicit Function Theorem

The adjoint of the calibration step θ → λ(θ) can be
produced following the general rules of AAD. The asso-
ciated computational cost can be generally expected to
be of the order of the cost of performing the bootstrap
algorithm a few times (but approximately less than 4
according to the general result of AAD quoted above).
This in itself is generally a very significant improvement
with respect to bump and reval approaches, involving
repeating the bootstrap algorithm as many times as sen-
sitivities required. However, following the suggestions
of (Christianson, 1998; Henrard, 2011), a much better
performance can be obtained by exploiting the so-called
implicit function theorem, as described below.

By differentiating with respect to θ the calibration
identity (3) we get

∂Gi
∂θk

+

M∑
j=1

∂Gi
∂λj

∂λj
∂θk

= 0 ,

for i = 1, . . . ,M , and k = 1, . . . , Nθ, or equivalently

∂λi
∂θk

= −

[(
∂G

∂λ

)−1
∂G

∂θ

]
ik

. (14)

This relation allows the computation of the sensitivities
of λ(θ), locally defined in an implicit fashion by Eqs. (3)
and (4), in terms of the sensitivities of the function (4).

In the specific case, when θk 6= sj for j = 1, . . . ,M ,
i.e. when considering sensitivities with respect to market
risk factors other than the credit spreads, Eq. (14) can
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be expressed in turn as

∂λi
∂θk

= −

[(
∂s(λ, θ)

∂λ

)−1
∂s(λ, θ)

∂θ

]
ik

. (15)

Here we have used that θk is not a credit spread so that
∂G/∂θk = −∂s(λ, θ)/∂θk, where the par spread functions

s(λ, θ) = (s1(λ, θ), . . . , sM (λ, θ)) ,

sj(λ, θ) =
L(t, Tj ;λ, θ)

A(t, Tj ;λ, θ)
, (16)

are defined by Eqs. (3) and (4).
In the case of credit spread sensitivities, θk = sk,

Eq. (14) simplifies as follows

∂λi
∂sk

=

M∑
j=1

[
∂s(λ, θ)

∂λ

]−1

ij

∂Gj
∂sk

=

M∑
j=1

[
∂s(λ, θ)

∂λ

]−1

ij

∂sj
∂sk

=

[
∂s(λ, θ)

∂λ

]−1

ik

, (17)

where we have used that the par spread functions do not
explicitly depend on the credit spreads sk.

Equations (15) and (17) express the implicit function
theorem in the context of hazard rate calibration. These
allow the computation of the sensitivities ∂λi/∂θk by i)
evaluating the sensitivities of the par spread functions
with respect to the model parameters, ∂sj(λ, θ)/∂θk, and
the hazard rates, ∂sk(λ, θ)/∂λi and ii) solving a linear
system, e.g., by Gaussian elimination. This method is
significantly more stable and efficient than the näıve ap-
proach of calculating the derivatives of the implicit func-
tions θ → λ(θ) by differentiating directly the calibration
step either by bump and reval or by applying AAD to
the calibration step. This is because s(λ, θ) in Eq. (16)
are explicit functions of the hazard rate and the model
parameters that are easy to compute and differentiate.

Combining the implicit function theorem with adjoint
methods results in extremely efficient risk computations,
as we will demonstrate below.

Adjoint of the Calibration Step

All the sensitivities necessary to compute Eqs. (15) and
(17) can be obtained through the adjoint of the function

sj = sj(λ, θ)

defined by Eq. (16), namely, using the definitions (11)
and (12),

(λ̄, θ̄) = s̄j(λ, θ, s̄j) ,

where the scalar s̄j is the adjoint of the j-th par spread
with j = 1, . . . ,M . By applying the rules of AAD, this

can be implemented as

Aj = −s̄j
L(t, Tj ;λ, θ)

A(t, Tj ;λ, θ)2

Lj = s̄j
1

A(t, Tj ;λ, θ)

(λ̄, θ̄) += A(t, Tj ;λ, θ,Aj) ,
(λ̄, θ̄) += L(t, Tj ;λ, θ,Lj) ,

where A(t, Tj ;λ, θ,Aj) and L(t, Tj ;λ, θ,Lj) are the ad-
joints ofA(t, Tj ;λ, θ) and L(t, Tj ;λ, θ), respectively. Here
we have used the standard AAD notation for the incre-
ment operator += (Capriotti and Giles, 2012).

Combining AAD and the implicit function theorem re-
sults therefore in the following algorithm for the adjoint
of the calibration routine, θ̄ = λ̄(θ, λ̄):

1. Execute (λ̄, θ̄) = s̄j(λ, θ, s̄j) with s̄j = 1 for j =
1, . . . ,M . This gives the derivatives:

λ̄ij =
∂sj
∂λi

θ̄kj =
∂sj
∂θk

,

for i = 1, . . . ,M , and k = 1, . . . , Nθ.

2. Find the matrix ∂λ/∂θ by solving the linear system

∂s

∂λ

∂λ

∂θ
= −∂s

∂θ
.

3. Return:

θ̄k =

M∑
i=1

λ̄i
∂λi
∂θk

,

for k = 1, . . . ,M .

The adjoint of the calibration algorithm described
above is extremely efficient. Indeed, as illustrated in
Fig. 1, the sensitivities of the hazard rate with respect
to the credit spreads, and interest rates instruments can
be computed in ∼ 25% less time than performing a single
bootstrap.

Applications

Credit Default Swaps

As a first example we consider the calculation of price
sensitivities for a (portfolio of) CDS. In this case, the
adjoint of the pricing step simply reads, from Eq. (7),

L = V̄

A = −V̄ c
(λ̄, θ̄) = A(t, T ;λ, θ,A) ,

(λ̄, θ̄) += L(t, T ;λ, θ,L) ,
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FIG. 1 Cost of computing the sensitivities with respect to
the credit spreads and interest rates instruments - relative to
the cost of a single valuation - as a function of the number of
sensitivities.

where the risky annuity and expected loss (and their ad-
joint counterparts) are those of the CDS in the portfolio.
In this case, as illustrated in Fig. 1, the cost of the pric-
ing step is a small portion (∼ 10%) of the overall cost of
computing the sensitivities which is instead dominated
by the cost of the calibration step. As a result, all the
sensitivities can be obtained by means of AAD for ∼ 15%
less than the cost of performing a single valuation. In
typical applications, where computing sensitivities with
respect to 18 spread tenors and interest rate instruments
is commonplace, this results in a reduction of the com-
putational cost by a factor of 50 or more.

Credit Default Index Swaptions

As a second example, also of significant practical rel-
evance, we consider credit default index swaptions. The
value of these instruments at time t is given by

Vt = Z(t, TE ; θ)×

Et
(

max
(
ζ
[
ViCDS(TS , TE) + L(TE)− PE

]
, 0
))

(18)

where ζ = 1 for a payer and ζ = −1 for a receiver option,
ViCDS(TE , TM ) is the value at time TE of the underlying
credit default index swap (long protection) with standard
coupon rate and maturity TM , PE is the exercise fee, and
L(TE) is the value at time TE of the loss given default
associated to the names that have defaulted before ex-
piry,

L(TE) =

N∑
i=1

I(τ i < TE)N i(1−Riτ ),

where N is the number of names in the index, I is the
indicator function, and N i, τ i and Riu are the notional,

default time and recovery function of the i-th name in
the portfolio4.

According to the de facto market standard model (Ped-
ersen, 2003) the value at time TE of the random quan-
tity given by the sum of the loss amount, L(TE), and the
value of the credit default index swap, ViCDS(TE , TM ), is
modelled in terms of a single state variable, the default
adjusted forward spread sTE , as

ViCDS(TE , TM ) + L(TE) =

NtotAisda (sTE , TE , TM ) (sTE − c) , (19)

where c is the fixed rate in the underlying credit default

index swap and Ntot =
∑N
i=1N

i is the total notional of
the index. Here Aisda(s, t, T ) is the standardized risky
annuity of Eq. (6) calculated assuming a flat term struc-
ture of the credit spread s, according to the standard
ISDA conventions (ISDA, 2013). In the simplest setting,
the default adjusted forward spread is assumed lognor-
mally distributed,

sTE = FTE

× exp
[
− 1

2
σ2
TE (TE − t) + σTE

√
TE − t Z̃

]
, (20)

where σTE is the volatility of the default adjusted for-

ward spread, Z̃ is a standard normal random variable
and the forward FTE , can be determined by taking the
expectation of both sides of Eq. (19) giving,

GF (FTE ,λ, θ) ≡

V adjiCDS(TE , TM ;λ, θ)− V isdaiCDS(TE , TM ;FTE , θ) = 0 . (21)

The first term in the equation above,

V adjiCDS(TE , TM ;λ, θ) =

Et
[
ViCDS(TE , TM ) + L(TE)

]
,

can be computed according to the standard hazard rate
model using the time t default and recovery curves of the
index constituents:

V adjiCDS(TE , TM ;λ, θ) = L̃(t, TE ;λ, θ) + Z(t, TE ; θ)×
N∑
i=1

N i
(
L(TE , TM ;λi, θ)− cA(TE , TM ;λi, θ)

)
, (22)

with

L̃(t, TE ;λ, θ) = Z(t, TE ; θ)

N∑
i=1

N iL̃i(t, TE ;λi, θ)

where L̃i(t, T ;λi, θ) is defined by setting in Eq. (5)
Z(t, u; θ) → 1 to reflect that the loss amounts occurred

4 Here for simplicity of exposition we assume that no names in the
index have defaulted at valuation time.
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before option expiry are settled at TE . The second term
can be computed instead by numerical integration over
the distribution of sTE , Eq. (20),

V isdaiCDS(TE , TM ;FTE , θ) =

Et
[
NtotAisda (sTE , TE , TM ) (sTE − c)

]
. (23)

The calibration equation (21) defines implicitly the loss
adjusted forward spread, FTE , as a function of its volatil-
ity σTE , the hazard rates and expected recoveries of the
index constituents, and the risk parameters of the dis-
count curve, in short

FTE = FTE (λ; θ) . (24)

For a given set of input parameters θ and the calibrated
hazard rates for the index constituents λ, the pricing
algorithm consists of the following steps:

Step 1 Calibrate the forward by solving the calibration
equation (21). This involves computing Eq. (22)
using the hazard rate model and Eq. (23) by nu-
merical integration for each trial value of FTE .

Step 2 Compute the option value (18) using Eq. (19), e.g.,
using Gaussian quadrature

Vt = Z(t, TE)

L∑
k=1

wkφ(xk;FTE , θ)Pk , (25)

where φ(xk;FTE , θ) is the probability density func-
tion of sTE ,

Pk =(
ζ
[
NAisda (xk, TE , TM ) (xk − c)− PE

])+
, (26)

L is the number of quadrature points, and wk the quadra-
ture weights.

The adjoint of the implicit forward function (24),

(λ̄, θ̄) = FTE (λ, θ, F̄TE ) , (27)

can be computed by means of the implicit function theo-
rem, similarly to what we described for the adjoint of the
hazard rate calibration. More explicitly, one first com-
putes the adjoint of the calibration function (21)

(F̄TE , λ̄, θ̄) = GF (FTE ,λ, θ, ḠF )

with

GF = V
adj

iCDS(TE ,TM ;λ, θ, ḠF )−

V
isda

iCDS(TE , TM ;FTE , θ, ḠF ) . (28)

Here

(λ̄, θ̄) = V
adj

Idx(TE , TM ;λ, θ, V̄ adjiCDS) ,

FIG. 2 Cost of computing the sensitivities with respect to the
volatility, the constituents’ credit spreads and interest rate
instruments - relative to the cost of performing a single valu-
ation - as a function of the number of index constituents.

and

(F̄TE , θ̄) = V
isda

iCDS(TE , TM ;FTE , θ, V̄
isda
iCDS) ,

are the adjoints of Eqs. (22) and (23), respectively.
For ḠF = 1 Eq. (28) gives F̄TE = ∂GF /∂FTE , λ̄ij =

∂GF /∂λ
i
j , and θ̄k = ∂GF /∂θk, for i = 1, . . . , N , j =

1, . . . ,M , k = 1, . . . , Nθ. Applying the implicit function
theorem to the function GF one finally obtains the out-
puts of the function in Eq. (27):

λ̄ij = F̄TE
∂FTE
∂λij

= −
(
∂GF
∂FTE

)−1
∂GF
∂λij

,

θ̄k = F̄TE
∂FTE
∂θk

= −
(
∂GF
∂FTE

)−1
∂GF
∂θk

.

The adjoint of the pricing algorithm consists therefore
of the following steps:

Step 2̄ Set:

Z̄ = V̄
Vt

Z(t, TE ; θ)
,

and

θ̄ = Z̄(t, TE ; θ, Z̄) ,

where Z̄(t, T ; θ, Z̄) is the adjoint of the discount
function. Then compute the adjoint of the Gaus-
sian quadrature Eqs. (25) and (26), namely set
F̄TE = 0, and

φ̄k = V̄ Z(t, TE ; θ)wkPk ,

(F̄TE , θ̄) += φ̄(xk;FTE , θ, φ̄k) ,

for k = 1, . . . , L, where φ̄(xi;FTE , θ, φ̄i) is the ad-
joint of the probability density function. Note that
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due to the linearity of the adjoint function with re-
spect to the adjoint input, these instructions can
be re-expressed in terms of a numerical integration
of the form

(F̄TE , θ̄) =

Z(t,TE ; θ)

L∑
k=1

wkφ̄(xk;FTE , θ, V̄ )Pk ,

i.e., the adjoint of a Gaussian quadrature can be
expressed in terms of the quadrature of the adjoint
of the integrand.

Step 1̄ Set λ̄ = 0 and execute the adjoint of the implicit
forward function (24),

(λ̄, θ̄) += FTE (λ, θ, F̄TE ) ,

computed as described above. Note that the adjoint func-
tion in Eq. (23) can also be expressed in terms of a Gaus-
sian quadrature.

Steps 2̄ and 1̄ provide the outputs of the adjoint of the
pricing step in Eq. (9). Performing the adjoint of the
calibration step (10) as previously described generates
the full set of sensitivities.

The remarkable computational efficiency achievable for
swaptions is illustrated in Fig. 2. Here we plot the cost
of computing the sensitivities with respect to the volatil-
ity, the constituents’ credit spreads and interest rate in-
struments - relative to the cost of performing a single
valuation - for different numbers of index constituents,
ranging from 10 (e.g., for iTraxx SOVX Asia Pacific) to
125 (e.g., for iTraxx Europe or CDX.NA.IG). Combining
AAD with the implicit function theorem allows the com-
putation of interest rate and (constituents) credit spread
risk in 20% less than the cost of computing the option
value, resulting in up to 3 orders of magnitude savings
(note the logarithmic scale) in computational time.

Conclusions

In conclusion, we have shown how by combining ad-
joint ideas with the implicit function theorem one can
avoid the necessity of repeating multiple times the cal-
ibration of the hazard rate curves which, especially for
flow products, often represent the bottle neck in the

computation of spread and interest rate risk for credit
products. This typically results in orders of magnitudes
savings in computational time with respect to the stan-
dard bump and reval method. In addition, since AAD
produces analytical derivatives rather than finite differ-
ences approximations the calculation is much more ro-
bust numerically than bumping, which is instead often
affected by the problem that arbitrary perturbations of
credit spreads, recovery rates or of the discount curve
may lead to an arbitrageable hazard rate curve.Their
computation simply involves computing the sensitivities
of the par spread functions (16) with respect to the haz-
ard rate and the model parameters and solving the a
linear system, e.g., by Gaussian elimination.

The adjoint of the calibration step can be naturally
combined with the adjoint of the pricing step. This al-
lows one to compute the risk of portfolios of credit prod-
ucts faster than computing the portfolio value alone, thus
making possible risk management in real time without
onerous investments in calculation infrastructure.

Acknowledgments

The authors are grateful to Duncan Noltingk for a care-
ful reading of the manuscript and useful discussions and
suggestions. The opinions and views expressed in this
paper are uniquely those of the authors, and do not nec-
essarily represent those of Credit Suisse Group.

References

Capriotti, L., 2011, Journal of Computational Finance 3, 3.
Capriotti, L., and M. Giles, 2010, Risk 23, 79.
Capriotti, L., and M. Giles, 2012, Risk 25, 92.
Capriotti, L., M. Peacock, and J. Lee, 2011, Risk 24, 86.
Christianson, B., 1998, Optimization Methods and Software

9(4), 307.
Henrard, M. P. A., 2011, OpenGamma Quantitative Research

1, 1.
ISDA, 2013, Isda cds standard model, URL http://www.

cdsmodel.com/cdsmodel.
O’Kane, D., 2011, Modelling Single-name and Multi-name

Credit Derivatives, The Wiley Finance Series (Wiley).
Pedersen, C. M., 2003, Lehman Brothers Quantitative Credit

Research , 1.


