3,70 4 o e
“, 4.70
37,003 g, 53.90§ 3?3,60/53)

9.10 . l&.h
Doer — . - Lo 33.7n -y [. y

Automatic Differentiation '
for Financial Derivatives |

Antoine Savine

Introduction

* Automatic Differentiation
— Programming technique to produce analytical sensitivies to inputs for calculation code
- Automates the production of sensitivities

- Achieves breathtaking speed thanks to reverse adjoint propagation (RAP)

* AD a game changer for financial derivatives
— Risks for exotic books orders of magnitude faster
— Risks for CVA/DVA/xVA in reasonable time

* Risks an obvious application, but with AD we can also produce:
- Near instantaneous calibrations
— Real-time risk for exotics

- Combined with other techniques, future risks with Monte-Carlo
Optimal European hedge, transaction costs, volatility bid/offers, and more

- And more

www.danskemarkets.com 2

AD and finite difference

* Finite difference
- Bump inputs one by one and recalculate
- Also automatic
- Not analytical but does not matter much in practice

— Sensitivity to n inputs costs n function evaluations

* AD
— Calculates all sensitivities of a result in one single sweep

— Sensitivity to n inputs is computed in constant time!

www.danskemarkets.com 3

AD: benefits

* AD not entirely new in finance with pioneering work from
- Giles & Glasserman, 2006
— Capriotti, 2011
- Flyger & Scavenius, 2012, among others

* However underused in the context of exotics and CVA with Monte-Carlo and
multi-factor PDEs in most banks

* Whereas this is where AD makes the most significant difference

— Computation is costly

— Number of sensitivities is large

* In addition
— AD well suited to Monte-Carlo simulations
— AD works well with multithreading/parrallel computing

- And is particularly well suited to development in C++

www.danskemarkets.com 4

AD: limits

* AD computes sensitivities faster

* But does not improve the quality of sensitivities...
- Despite being analytical, end results typically very similar to FD with small bump
— AD computes derivatives with constant control flow

- Like FD, AD cannot work with discontinuous functions: digital/barrier features in Monte-Carlo
Before application of AD/FD, function must be smoothed: Call-Spread approximation, Malliavin Calculus

* AD consumes memory
— Consumption ~number of mathematical operations ~running time
— On modern computers, roughly 5GB per second

- We will review techniques to reduce consumption

* Proper implementation of AD is hard work
- "Automatic” differentation means final code is hassle and maintenance free...

- ...But its efficient production takes skill and effort

www.danskemarkets.com 5

Example: Monte-Carlo Barrier Microbuckets

* Knock-out call, Monte-Carlo, local volatility model
— Volatility function of spot and time
- Bilinearly interpolated from local volatility matrix

— We compute "microbuckets” = sensitivities to all local volatilities in the matrix

* MacBook Pro 2013, quad 2.60Ghz

Microbucket computation times %:ﬂ‘
Simuls Steps Sens |Pricing/ST FDM AD FDM-MT | AD-MT
20,000 50 100 0.10sec 10sec | 0.50sec | 2.50sec | 0.20sec e B
20,000 50 400 0.10sec 40sec | 0.50sec 10sec 0.20sec | e=m s
100,000 200 1,600 2sec ~1hour | 10sec 15min | 2.5sec N

* Quick demo

15 20 25 30 35) 45 50 55 60 65 70 75 80 85 90 95

000 (0.00) 000 {(000) 000 (000) 000 (012) (0.21) (0.31)

050 - - - - 000 000 000 (0.00) (0.00) (0.00) (0.03) 000 002 (0.05) (0.14) (0.12)

o7 - - - - - 000 000 000 000 (0.00) 000 (0.01) (002) (0.02) (0.03) (0.04) (0.07) (0.11)
1.00 - - - - (000) 000 000 000 000 (0.00) 001 000 002 (0.06) (0.09) ({0.11) (0.09)
125 - - - 000 (0.00) (0.00) (0.00) 000 001 000 001 000 003 001 (0.06) (0.03) (0.03) (0.17)
150 - - - 000 000 000 000 000 001 (0.00) 001 000 001 (0.01) ([0.04) (0.07) (0.06) (0.07)
175 - - - 000 000 000 000 000 001 00L 001 001 (001 (005 (0:04) (0.05) (0.06) (0.05)

www.danskemarkets.com 6

Reverse Adjoint Propagation

* Any calculation program (for a given control flow) decomposes into

Inputs Xy, X4

Elementary operations: +,-,*,/,pow,log,exp,sin,etc. i > n, x. = f, (xj), j<i or x =f (xj,xk), J,k<i

Eventually aresult Yy =X,

— Note: this is a decomposition per elementary operation, not per variable

. _ oy
We call adjoints A = x

* \We have
é‘xj o de
— From the chain rule A =Z5—Aj,Ei = J>|,d—¢0
g OX X
— And obviously A, , =1 F

* This is evaluated in reverse order from A, to A
- 5Xj/5xi are known analytically, note they depend on the (Xi)s

- In one single sweep where adjoints are deduced from one another

www.danskemarkets.com 7

Reverse Adjoint Propagation: example

y = XX, +log(x, +2x,)

‘ c Agt=X,As

Ay=1
XpXp+log(x,+2x,)

A5+:l*A9 ‘=
+
Xo+2X, log(x,+2x,)
A-=1/(X,+2X,) Ag=1 Agt=1*A,

Ac=1/(X,+2X,)

2Xy

Ag=1
XoX2

A=Xo+1(X,+2X,) @

2*
A+=2A,
A;=0 X3

A=21(Xy+2X,)

www.danskemarkets.com 8

Reverse Adjoint Propagation: methodology

* First we performed the usual forward calculation
keeping track of all operations
partial derivatives depend on arguments
= also keep track of all intermediate results

* Then we propagated adjoints backwards through the operation chain
All adjoints were calculated from one another in a single sweep

* Complexity
- Forward calculation: 1x
- Backward propagation: 1x++

- Storage, traversal

— Total: 4x-8x, constant in number of sensitivities

www.danskemarkets.com 9

AD with operator overloading

* Use a custom type to represent numbers in place of native types (double)

Class adDataType{

)y

* QOverload all mathematical operators +,-,*,/ and functions log, exp, sqrt, etc. to:
— Perform the calculation as for native types

- Record the operation and store its result

* So that we can later run RAP throughout the operation chain

* We call "tape” the structure in memory where operations are recorded

* And "tape entry” each record in the tape

www.danskemarkets.com 10

AD with operator overloading (2)

* In practice we also need
— Comparison operators

— Constructor from native types

* Template calculation code so that it can be run with the custom number type

double calcFunc(const double x[]) { template <class T>
double temp; T calcFunc(const double T[]) {
T temp;

.

i..

www.danskemarkets.com 11

AD programming guidelines

* Many possible choices, we present one

* Custom number type stores a reference to the corresponding tape entry
* Tape
- Is global/static so as to be accessible by calculation code

- |Is allocated by blocks to avoid costly allocation for each operation

* Each tape entry stores:

— The operation type
— The intermediate result
— The adjoint

— Pointers on tape entries of the arguments A=xgH(x;*2x,) @:

- Everything to do with the tape entry
must be overoptimized e P
because we have one for every operation il

A=2(x,+2%,) @

www.danskemarkets.com 12

AD programming guidelines (2)

* Templated calculation code is called with the custom data type
- Starting with an empty tape
— Computation is performed forward

— Operations and results are all recorded on the tape

* After calculation, we use the recorded tape
- Adjoints are propagated backward through the tape, from last entry to first
- Derivatives are picked as the adjoints in the relevant entries

- Tape is wiped

www.danskemarkets.com 13

.

Tape entry data structure

tapeEntry (virtual)

Properties:
double value
double adjoint = 0

Methods:
propagateAdjoints (virtual)

v

\

tapeEntryBinary (virtual)

Properties:
tapeEntry* argument1
tapeEntry* argument2

tapeEntryUnary (virtual)

Properties:
tapeEntry* argument

tapeEntryValue

propagateAdjoints
= { do nothing }

tapeEntryMult

propagateAdjoints

= { argument1->adjoint +=
this->adjoint * argument2->value
Argument2->adjoint +=
this->adjoint * argument1->value

}

tapeEntryLog

propagateAdjoints

= { argument->adjoint

+= this->adjoint / argument-
>value }

tapeEntryExp

tapeEntrySqrt

www.danskemarkets.com

14

Tape data structure

i

NS

\

- TrTrT-Tr-- T- Tr-—-TTr--TT-Tr=-Tr--=-Tr-=-Tr=-
| | | | | | | | | | | |

[W |

——- T
I I I I I
e I L L I o o I I I I M M E E

o

* Pre-allocated blocks of memory where entries are stored
* List of references to where individual entries are stored

* Pointer to first available storage slot

www.danskemarkets.com 15

Custom number data structure

* Holds no data, only reference to corresponding tape entry

* Operators/functions overloaded to store new entry in the tape

friend adDataType operator+(const adDataType& lhs, const adDataType& rhs)
{ return adDataType(*new (tape()) adTapeEntryAdd(lhs.myEntry, rhs.myEntry)); }

return into construction placement \ new tape \ tape entry will

variable out of the new new entry

calculate the
holding result tape entry

result (sum)
and store it

www.danskemarkets.com 16

AD production demo

Anchor 28-Jan-14 Pre-simulations (Longstaff-Schwariz) 512
Model BEAST| Simulations 4,096 Expected exposure
Instrument READCVA 50,000,000 —-=-======m=mm=m=mmmmemmmmmmmmmm e e e e e mmmmm e
Use MT TRUE Exposure quarterly over 2014, then semi-annual |
Time 00.00:19.24] | |
| 50000000 Frritesnnadannm s snan s e rat st s R rra e s R s n s TR

Results ; ‘
variable names values value errors scenario name bump type L R e T EE b e B
CVA_NTL 11.72% 0.05% |
CVA_VAR 5,152,750 126,671 LYSOD00000 === =ns o mmmcimim e B o e S e L B i i
DVA_NTL 6.10% 0.02%
DVA_VAR - 12,215,077 67,608 "
FND_NTL 6.41% 0.02%) e e e e
FND_VAR - 12,436,753 68,463 | |
1D22140859C 2,261 4,126 <250,000,000 - o- == -mmogo oo T m oo oo ommms s smosssoooosoooosoooooosoooos
1D22140862C - 4,273,618 8,370
1D24908088C - 74,179 12,7112 -300,000,000 +f---X--J-Yf---k-----------mmemmmemmeeme—eececccccceocoomooooee
1D24908117C - 2,618,265 15,480 |
1D25366121C - 46,440 3,289 BB D0II00. = T e B
1D25366155C - 892,373 4,728 | |
1D25673417C - = } 400,000,000
1D26288974C - 481,384 12,592 e e e
1D26288980C - 1,097,466 12,987

www.danskemarkets.com 17

Memory

* Buy more memory!
* Note for xll users
— 32bit Excel limits xIl code memory to ~1GB
— Get around by wrapping calculation code in quant servers, not xlls

— Many additonal benefits to this architecture

oyl
:‘j Home Insert Page Layos Formulas ata i .
= calculation request
: kbookWViews | || || | Maaos)
= o st = function kX1Range argument rexpiry
) ookt téisange argumen% rStEéle
A 5 c o E ange argument rputCa
1 arguments i kx1Range argument rforward
2 expiry 1 Receving kXlRange argument rvolatility
3 strike 100 Evaluating sBlackValue
4 forward 100 IDone in @ ms
= volatility 20% < Executed - sending result
Result sent
E result
| oo
it~ Calcunnte | £ 0 10 jgease(-)

32Dbit xll 64Dbit quant server

www.danskemarkets.com 18

Performance

* Speed: expect 4x-8x the cost of calculation
- 10 sensitivities: ~FD
— 100 sens: up to 20x speedup
- 1,000 sens: up to 200x speedup

* Memory: expect 5GB per second per core
- Some algorithm (say multi-factor PDE) taking 10sec on one core
— Will consume 50GB of memory with AD
— With multi-threading over 10 cores, calc. time may be reduced to up to 1sec
— But AD still consumes 50GB (5GB on each core)

— And if calculation takes 30sec to start with, AD will consume ~150GB of memory!

* Plus the real memory constraint is the size of the cpu cache
— Propagation through large tapes produces constant copying in and out of the cache

— Substantial performance drag

www.danskemarkets.com 19

Checkpointing

* Cache optimization
- Work with many small tapes
- Avoid long tapes

- Easier said than done?

* Monte-Carlo
— Calculate derivatives pathwise, then average

— Tape records only one path, typically (much) less than 1/100s or 50MB per core

* \What about PDE?

www.danskemarkets.com 20

Checkpointing (2)

* General technique called "checkpointing”
- Split algorithm in slices

- Use a tape for each slice

- Wipe the tape between slices

- Aggregate derivatives across slices

* Cut and paste tape entries
— General idea: RAP works with any boundary condition, does not have to be 1 for result, 0 elsewhere
- Hence, we "paste” adjoints resulting from RAP on slice n as boundary conditions for slice n-1

- A general form of checkpointing that works with PDE and a lot more

www.danskemarkets.com 21

Checkpointing (3)

run algo in full no AD

>
slice 1 \l' slice 2
store temp results
\ run slice in AD mode S

record tape

run slice in AD mode

—— record tape /

(EEBEEELE

results

wipe tape
7\ ______-—-——"‘
<\ o} o —

wipe tape
P ——— _________-—-
pm—— \\

www.danskemarkets.com 22

AD for multithreaded algorithms

* We need each thread to have its own tape

* Access to tape must be global/static so that every overloaded operation may
use it
* Solution (in C++): make it thread_local
- thread_local variables work like global/static variables for all intents and purposes
- However each thread has its own copy
- Exactly fits our needs

— Support for thread local variables in C++11 standard (Visual Studio 12+), Boost, Windows API, ...

* Hence making AD work with MT algos is as easy as
— Allocate a tape for each thread

— Mark the tape accessor as thread local

www.danskemarkets.com 23

Only instrument active code

* Instrument code = use custom number type
— Operations are recorded

- Incorporated in sensitivities

* Not instrumented code = use native number type
— Operations are not recorded

— Ignored for sensitivities

* Opimizations
— Do not instrument inactive variables: variables that do not depend on inputs
Example: uniform and gaussian random number generation for Monte-Carlo
— Do not instrument active variables which effect on sensitivities is best ignored
Example: size of PDE grid, depends on volatility, however d(result) / d(size) is numerical noise

Example 2: LSM, see next

www.danskemarkets.com 24

Why LSM needs no instrumentation

* The PV of a set of cash-flows early exerciseable at some date T,
f, =E| PVl | PV = E, {Z DF (T,.T,)CFJ}
j=i

* Through LSM f; = E[PVil{proxy(pvi)w}}

of. PV,

ol
ol { proxy(PV;)>0}
o HenCe oa =E |: oa 1{proxy(PVi)>0} :| +E I:PVI oa]

pathwise diff with frozen

exercise boundary =0 if proxy is good

* If proxy is bad, rhs is not 0 but it is numerical noise we want to ignore

* Hence LSM is inactive and does not require instrumentation

www.danskemarkets.com 25

Optimization with expression templates

* AD still in active development with very recent imporvements

e 2014 Paper from Robin J. Hogan, University of Reading
- "Fast reverse-mode automatic differentiation using expression templates in C++”
— Store tape entries per expression, not per operation
- Forinstance Y = X, X, + Iog(x2 + 2X4) uses 1 tape entry
— Tape entries are multinomial: n references to arguments, as opposed to max 2
— Tape entries do not store operation type, but directly sensitivities to arguments

— Dimension and all partial derivatives figured at compile time using expression templates

* The goal is to reduce the number of tape entries for a given code
- Same number of calculations
— But a lower number of tape entries
— Hence a reduction in memory usage and time spent in tape traversal

- Improvement of 10 to 50% depending on the ratio of expressions to operations in the code

www.danskemarkets.com 26

Questions, comments, suggestions most welcome

adCentral@aSavine.com

www.danskemarkets.com 27

