
Automatic Differentiation
for Financial Derivatives

Antoine Savine

www.danskemarkets.com

Introduction

• Automatic Differentiation
− Programming technique to produce analytical sensitivies to inputs for calculation code

− Automates the production of sensitivities

− Achieves breathtaking speed thanks to reverse adjoint propagation (RAP)

• AD a game changer for financial derivatives
− Risks for exotic books orders of magnitude faster

− Risks for CVA/DVA/xVA in reasonable time

• Risks an obvious application, but with AD we can also produce:
− Near instantaneous calibrations

− Real-time risk for exotics

− Combined with other techniques, future risks with Monte-Carlo
Optimal European hedge, transaction costs, volatility bid/offers, and more

− And more

2

www.danskemarkets.com

AD and finite difference

• Finite difference
− Bump inputs one by one and recalculate

− Also automatic

− Not analytical but does not matter much in practice

− Sensitivity to n inputs costs n function evaluations

• AD
− Calculates all sensitivities of a result in one single sweep

− Sensitivity to n inputs is computed in constant time!

3

www.danskemarkets.com

AD: benefits

• AD not entirely new in finance with pioneering work from
− Giles & Glasserman, 2006

− Capriotti, 2011

− Flyger & Scavenius, 2012, among others

• However underused in the context of exotics and CVA with Monte-Carlo and
multi-factor PDEs in most banks

• Whereas this is where AD makes the most significant difference
− Computation is costly

− Number of sensitivities is large

• In addition
− AD well suited to Monte-Carlo simulations

− AD works well with multithreading/parrallel computing

− And is particularly well suited to development in C++

4

www.danskemarkets.com

AD: limits

• AD computes sensitivities faster

• But does not improve the quality of sensitivities...
− Despite being analytical, end results typically very similar to FD with small bump

− AD computes derivatives with constant control flow

− Like FD, AD cannot work with discontinuous functions: digital/barrier features in Monte-Carlo
Before application of AD/FD, function must be smoothed: Call-Spread approximation, Malliavin Calculus

• AD consumes memory
− Consumption ~number of mathematical operations ~running time

− On modern computers, roughly 5GB per second

− We will review techniques to reduce consumption

• Proper implementation of AD is hard work
− ”Automatic” differentation means final code is hassle and maintenance free...

− ...But its efficient production takes skill and effort

5

www.danskemarkets.com

Example: Monte-Carlo Barrier Microbuckets

6

• Knock-out call, Monte-Carlo, local volatility model
− Volatility function of spot and time

− Bilinearly interpolated from local volatility matrix

− We compute ”microbuckets” = sensitivities to all local volatilities in the matrix

• MacBook Pro 2013, quad 2.60Ghz

• Quick demo

www.danskemarkets.com

Reverse Adjoint Propagation

• Any calculation program (for a given control flow) decomposes into
− Inputs

− Elementary operations: +,-,*,/,pow,log,exp,sin,etc. or

− Eventually a result

− Note: this is a decomposition per elementary operation, not per variable

• We call adjoints

• We have
− From the chain rule

− And obviously

• This is evaluated in reverse order from to
− are known analytically, note they depend on the s

− In one single sweep where adjoints are deduced from one another

7

0 1,..., nx x −

(), ,i i ji n x f x j i≥ = < (), , ,i i j kx f x x j k i= <

1Ny x −=

i
i

yA
x

δ
δ

=

, , 0
i

j j
i j i

j E i i

x dx
A A E j i

x dx
δ
δ∈

⎧ ⎫
= = > ≠⎨ ⎬

⎩ ⎭
∑

1 1NA − =

1NA − 0A

j ix xδ δ ()ix

www.danskemarkets.com

Reverse Adjoint Propagation: example

8

2*

x0

x1

x2

x3

x4

x6

x7 x8

log

y=x9

+

A0=x2

A2=x0+1/(x2+2x4)

A3=0

A4=2/(x2+2x4)

+

A7=1/(x2+2x4) A8=1

A9=1

A5+=1*A9

A8+=1*A9

A7+=1/x7*A8

A2+=A7

A6+=A7

A4+=2A6

x5

*

x0x2

2x4

x2+2x4 log(x2+2x4)

x0x2+log(x2+2x4)

A6=1/(x2+2x4)

A5=1

A0+=x2A5

A2+=x0A5

A1=0

()0 2 2 4log 2y x x x x= + +

www.danskemarkets.com

Reverse Adjoint Propagation: methodology

• First we performed the usual forward calculation
keeping track of all operations
partial derivatives depend on arguments

also keep track of all intermediate results

• Then we propagated adjoints backwards through the operation chain
All adjoints were calculated from one another in a single sweep

• Complexity
− Forward calculation: 1x

− Backward propagation: 1x++

− Storage, traversal

− Total: 4x-8x, constant in number of sensitivities

9

www.danskemarkets.com

AD with operator overloading

• Use a custom type to represent numbers in place of native types (double)

• Overload all mathematical operators +,-,*,/ and functions log, exp, sqrt, etc. to:
− Perform the calculation as for native types

− Record the operation and store its result

• So that we can later run RAP throughout the operation chain

• We call ”tape” the structure in memory where operations are recorded

• And ”tape entry” each record in the tape

10

Class adDataType{
…
};

www.danskemarkets.com

AD with operator overloading (2)

• In practice we also need
− Comparison operators

− Constructor from native types

• Template calculation code so that it can be run with the custom number type

11

double calcFunc(const double x[]) {
double temp;
...
}

template <class T>
T calcFunc(const double T[]) {
T temp;
...
}

www.danskemarkets.com

AD programming guidelines

• Many possible choices, we present one

• Custom number type stores a reference to the corresponding tape entry

• Tape
− Is global/static so as to be accessible by calculation code

− Is allocated by blocks to avoid costly allocation for each operation

• Each tape entry stores:
− The operation type

− The intermediate result

− The adjoint

− Pointers on tape entries of the arguments

− Everything to do with the tape entry
must be overoptimized
because we have one for every operation

12

www.danskemarkets.com

AD programming guidelines (2)

• Templated calculation code is called with the custom data type
− Starting with an empty tape

− Computation is performed forward

− Operations and results are all recorded on the tape

• After calculation, we use the recorded tape
− Adjoints are propagated backward through the tape, from last entry to first

− Derivatives are picked as the adjoints in the relevant entries

− Tape is wiped

13

www.danskemarkets.com

Tape entry data structure

14

tapeEntry (virtual)

Properties:
double value
double adjoint = 0

Methods:
propagateAdjoints (virtual)

tapeEntryBinary (virtual)

Properties:
tapeEntry* argument1
tapeEntry* argument2

tapeEntryUnary (virtual)

Properties:
tapeEntry* argument

tapeEntryValue

propagateAdjoints
= { do nothing }

tapeEntryLog

propagateAdjoints
= { argument->adjoint
+= this->adjoint / argument-
>value }

tapeEntryExp

tapeEntrySqrt

tapeEntryMult

propagateAdjoints
= { argument1->adjoint +=
this->adjoint * argument2->value
Argument2->adjoint +=
this->adjoint * argument1->value
}

+ - /

www.danskemarkets.com

Tape data structure

15

• Pre-allocated blocks of memory where entries are stored

• List of references to where individual entries are stored

• Pointer to first available storage slot

www.danskemarkets.com

Custom number data structure

16

• Holds no data, only reference to corresponding tape entry

• Operators/functions overloaded to store new entry in the tape

friend adDataType operator+(const adDataType& lhs, const adDataType& rhs)
{ return adDataType(*new (tape()) adTapeEntryAdd(lhs.myEntry, rhs.myEntry)); }

new tape
entry

placement
new

construction
out of the new
tape entry

return into
variable
holding result

tape entry will
calculate the
result (sum)
and store it

www.danskemarkets.com

AD production demo

17

www.danskemarkets.com

Memory

• Buy more memory!

• Note for xll users

− 32bit Excel limits xll code memory to ~1GB

−Get around by wrapping calculation code in quant servers, not xlls

−Many additonal benefits to this architecture

18

32bit xll 64bit quant server

calculation request

function
arguments

result

www.danskemarkets.com

Performance

• Speed: expect 4x-8x the cost of calculation
− 10 sensitivities: ~FD

− 100 sens: up to 20x speedup

− 1,000 sens: up to 200x speedup

• Memory: expect 5GB per second per core
− Some algorithm (say multi-factor PDE) taking 10sec on one core

− Will consume 50GB of memory with AD

− With multi-threading over 10 cores, calc. time may be reduced to up to 1sec

− But AD still consumes 50GB (5GB on each core)

− And if calculation takes 30sec to start with, AD will consume ~150GB of memory!

• Plus the real memory constraint is the size of the cpu cache
− Propagation through large tapes produces constant copying in and out of the cache

− Substantial performance drag

19

www.danskemarkets.com

Checkpointing

• Cache optimization
− Work with many small tapes

− Avoid long tapes

− Easier said than done?

• Monte-Carlo
− Calculate derivatives pathwise, then average

− Tape records only one path, typically (much) less than 1/100s or 50MB per core

• What about PDE?

20

www.danskemarkets.com

Checkpointing (2)

• General technique called ”checkpointing”
− Split algorithm in slices

− Use a tape for each slice

− Wipe the tape between slices

− Aggregate derivatives across slices

• Cut and paste tape entries
− General idea: RAP works with any boundary condition, does not have to be 1 for result, 0 elsewhere

− Hence, we ”paste” adjoints resulting from RAP on slice n as boundary conditions for slice n-1

− A general form of checkpointing that works with PDE and a lot more

21

www.danskemarkets.com

Checkpointing (3)

22

run algo in full no AD

store temp results

run slice in AD mode

record tape

RAP

run slice in AD mode

record tape

wipe tape

wipe tape
results

RAP

www.danskemarkets.com

AD for multithreaded algorithms

• We need each thread to have its own tape

• Access to tape must be global/static so that every overloaded operation may
use it

• Solution (in C++): make it thread_local
− thread_local variables work like global/static variables for all intents and purposes

− However each thread has its own copy

− Exactly fits our needs

− Support for thread local variables in C++11 standard (Visual Studio 12+), Boost, Windows API, ...

• Hence making AD work with MT algos is as easy as
− Allocate a tape for each thread

− Mark the tape accessor as thread local

23

www.danskemarkets.com

Only instrument active code

• Instrument code = use custom number type
− Operations are recorded

− Incorporated in sensitivities

• Not instrumented code = use native number type
− Operations are not recorded

− Ignored for sensitivities

• Opimizations
− Do not instrument inactive variables: variables that do not depend on inputs

Example: uniform and gaussian random number generation for Monte-Carlo

− Do not instrument active variables which effect on sensitivities is best ignored

Example: size of PDE grid, depends on volatility, however d(result) / d(size) is numerical noise

Example 2: LSM, see next

24

www.danskemarkets.com

Why LSM needs no instrumentation

• The PV of a set of cash-flows early exerciseable at some date

• Through LSM

• Hence

• If proxy is bad, rhs is not 0 but it is numerical noise we want to ignore

• Hence LSM is inactive and does not require instrumentation

25

{ } ()01 , ,
iii i i T i j jPV

j i
f E PV PV E DF T T CF>

≥

⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

(){ }01
ii i proxy PVf E PV
>

⎡ ⎤= ⎣ ⎦

(){ }
(){ }0

0

1
1 i

i

proxy PVi i
iproxy PV

f PV
E E PV

a a a
>

>

∂⎡ ⎤∂ ∂⎡ ⎤= + ⎢ ⎥⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎢ ⎥⎣ ⎦

iT

pathwise diff with frozen
exercise boundary =0 if proxy is good

www.danskemarkets.com

Optimization with expression templates

• AD still in active development with very recent imporvements

• 2014 Paper from Robin J. Hogan, University of Reading
− ”Fast reverse-mode automatic differentiation using expression templates in C++”

− Store tape entries per expression, not per operation

− For instance uses 1 tape entry

− Tape entries are multinomial: n references to arguments, as opposed to max 2

− Tape entries do not store operation type, but directly sensitivities to arguments

− Dimension and all partial derivatives figured at compile time using expression templates

• The goal is to reduce the number of tape entries for a given code
− Same number of calculations

− But a lower number of tape entries

− Hence a reduction in memory usage and time spent in tape traversal

− Improvement of 10 to 50% depending on the ratio of expressions to operations in the code

26

()0 2 2 4log 2y x x x x= + +

www.danskemarkets.com

Questions, comments, suggestions most welcome

27

adCentral@aSavine.com

