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Introduction

Greeks calculation is complicated and time consuming operations
in the financial software.
Here we concentrate on the model Greeks: price/XVA change
w.r.t. the change of the model parameters

Our goal is the ”Rolls-Royce” of the computational finance:

◮ compute greeks of multiple XVA’s (CVA, DVA, FVA, COLVA
etc) with a general collateral (CSA)

◮ for an instrument set containing all kinds of instruments:
◮ ”forward” (e.g. swaps, European options, Barrier options)
◮ ”backward” (e.g. Bermudan or American options)

◮ using MC methods including regressions
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Methods for greeks

Methods for model greeks

◮ Bump-and-reprice (BnR)

◮ Payoff differentiation (the Adjoint Differentiation (AD) is a
part of it)

◮ Likelihood (notably, Malliavin techniques, powerful but very
bespoke)

In general, the quality of the BnR derivatives are equivalent to the
payoff differentiation ones. The speed depends on multiple factors,
mainly on the number of market bumps w.r.t. model parameters.
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Traditional Payoff Differentiation

A Traditional Payoff Differentiation goes path-by-path; it can be
either direct (towards the result) or adjoint (back from the result):

◮ direct differentiation is efficient when the number of results
(outputs) is more that the number of parameters (input)

◮ adjoint differentiation (AD) is efficient in the opposite case
(more natural in finance)

The AD was brought into mathematical finance by
Glasserman-Gilles in 2006 and widely spread after that (Capriotti,
Andreasen and many others):

◮ The AD coding is considered as complicated

◮ It requires a lot of memory to write the tape

◮ However, its ”theoretical ” speed (number of multiplications)
is impressive: it does not depend of the number of parameters

but is only 4-10 times slower than the function itself
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AD logic

Using a simple example below we show why the AD speed is so
high.
Introduce:

◮ Model parameters: Nθ-dimensional vector

θ = {θ1, . . . , θNθ
}

◮ Model states: NX dimensional Markovian process in a model
measure and expectation E[·]

X (t) = {X1(t), . . . ,XNX
(t)}

depending on the parameters X (t) = X (t, θ) defined on a
discrete set of timesteps by general Markov discretization
scheme on a set of Nt simulation dates {ti}

Nt

i=1

X (ti+1) = G (ti ,X (ti ),Zi , θ),

where Zi is, for example, Gaussian random variable. The
origin is at t0.
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Consider a general path-dependent payoff

Q(X ) = Q(X (t1), . . . ,X (tNt
))

and its value V (θ) = E [Q(X (θ))] calculated using the Monte
Carlo (MC) simulations

V (θ) ≃ N−1
p

Np∑

p=1

Q(X (θ)[p]),

where Np is the number of MC paths and X (t)[p] is the state
realization of the pth path.
The goal → calculate the price derivative over all params {θn}:

∂V (θ)

∂θ
≃

1

Np

Np∑

p=1

∂Q(X )[p]

∂θ

Remark. We calculate the underlying derivatives ∂Q[p]/∂θ
path-by-path and for notational brevity, omit the path index.
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The AD calculation is based on the backward substitution of the
simulation step into the payoff:

Q(X (t1), · · · ,X (tNt
)) =

= Q(X (t1), . . . ,X (tNt−1
),X (tNt

,G (tNt−1,X (tNt−1),ZNt−1, θ))

= · · ·

= Qi (X (t1), . . . ,X (ti );Zi , . . . ,ZNt−1; θ),

where we have denoted by Qi the payoff value for which we have
backwardly substituted the states until its latest direct dependence
on X (ti).
Our goal → find the payoff dependence on the states for which we
have substituted all of the θ dependencies:

Q0(Z1, . . . ,ZNt−1; θ)

and its derivatives over the parameters ∂Q0/∂θ
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The recursive relationship between Qi and Qi+1,

Qi (X (t1), . . . ,X (ti );Zi , . . . ,ZNt−1; θ)

= Qi (X (t1), . . . ,X (ti−1),G (ti−1,X (ti−1),Zi−1, θ);Zi , . . . ,ZN−1; θ)

= Qi−1(X (t1), . . . ,X (ti−1);Zi−1, . . . ,ZN−1; θ),

is the key to expressing the payoff derivatives backwardly:

∂Qi−1

∂θ
=

∂Qi

∂θ
+

∂Qi

∂X (ti)

∂G (ti−1,X (ti−1),Zi−1, θ)

∂θ

∂Qi−1

∂X (ti−1)
=

∂Qi

∂X (ti−1)
+

∂Qi

∂X (ti)

∂G (ti−1,X (ti−1),Zi−1, θ)

∂X (ti−1)

We call these two equations the AD recursion.
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The AD is a reverse scheme w.r.t. the calculation process →
it requires storage of the following information during the model
simulation and instrument pricing

◮ Simulation info (simulation tape):
derivatives of the discretization function:

∂G (ti ,X (ti ),Zi , θ)

∂θ
and

∂G (ti ,X (ti ),Zi , θ)

∂X (ti )
,

◮ Instrument info (instrument tape)
partial derivatives of the payoff,

∂Qi

∂X (ti−1)
,

which is a vector of length NX per path per time step.
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For any fixed payoff Q, AD requires the reverse propagation.
Having calculated and stored the tapes we go backward in time,
calculating the derivatives.
Cost of the AD operations:

◮ The derivative calculations ∂Qi/∂X (ti ) cost NX
2

multiplications per path and per timestep.

◮ The derivative calculations ∂Qi/∂θ cost O(1)NX

multiplications per path and per timestep for all parameters.

Remark. Our example is a ”manual” AD; there exists softwares
permitting an automatic AD (with different degree of efficiency)
where the simulation and pricing are not separated but the prices
treated algorithmically as general function of the parameters

Price=FUNCTION(theta1,...,thetaN)
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The AD for the callable exotics

◮ The speed of greeks calculation becomes important (XVA
hedging for exotics portfolios, initial margin, FRTB etc.)

◮ The regression (least-square MC, AMC) is the key numerical
method for exotic deals; it is one of the most complex and
time-consuming numerical methods.

◮ It introduces path interdependencies that compromise the
path-by-path valuation: the AD becomes difficult. That is
why people often avoid the regression if they can.

◮ In A2 (2016) and AIKMM (2016) we have found a universal
method that can be applied uniformly across all exotic deals
for both price and XVA greeks with full regression mechanism.

◮ We will illustrate the underlying mathematical logic on
example of a Bermudan swaption.
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Callable instruments

◮ Callable instruments pricing procedure is encoded in so called
pricing script.

◮ Its main component is a continuation value (CV). We denote
it as V (t) at time t.

◮ The CV is a certain function of the model state variables at
time t. Financially, V (t) is a hold value: it is the price of
holding an option at time t with all possible payments and
exercises taking place thereafter.

◮ A simple CV example is a leg with a single unit payment at
time T . More complicated examples include a swap value or a
swaption holding value. For a European option the CV is a
discounted conditional expectation of the payoff.
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Bermudan swaption

◮ Consider a Bermudan swaption giving the right to enter into a
swap on exercise dates Ti .

◮ The swap pays a generalized cashflow cj at date Tj (for
simplicity coinciding with the exercise dates). The cashflows
can be, for example, fix or floating rates. The cashflows are
known analytically as functions of states and parameters.

◮ Let V (t) and S(t) denote the CVs of the swaption and the
swap

◮ The swaption’s backward pricing is performed using two
repeated steps encoded in a pricing script

⇓
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◮ The first step: transformations at Tj

V (T−
j ) = max(V (Tj),S(Tj ))

S(T−
j ) = S(Tj) + cj

where T− = T − ε

◮ The second step: propagation (the discounted conditional
expectation) between the instrument dates:

S(t) = N(t)E

[
S(T )

N(T )

∣
∣
∣
∣
Ft

]

and V (t) = N(t)E

[
V (T )

N(T )

∣
∣
∣
∣
Ft

]

where N(t) is the model numeraire.
Often, the CV’s S(t) and V (t) are certain function of the
model states (driving factors) X (t).

A general instrument contains a set of CVs Vj that are
transformed by means of +, -, *,/, max, step etc.
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Regression

In practice, for conditional expectations, we use the MC regression
(a.k.a. least-squares MC, AMC). Each CV is presented as a vector

of path values V (t) = {V (t)[p]}
Np

p=1.

Fix two times t1 and t2 and denote V (ti) = V (i) and X (t1) = X .
For the numerical calculation of the conditional expectation

V (1)(x) = E

[

V (2)
∣
∣
∣X = x

]

,

we need to fix basis functions {φn(X )}Nb

n=1 and determine
coefficients βn which minimize the expectation

χ2 = E





(

V (2) −
∑

n

βnφn(X )

)2


 ,

Remark. For simplicity we ignore numeraire in the expectations
(See AIKMM (2016) for complete formulas.)
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The unconditional expectation χ2 is calculated over the MC paths:

χ2 ≃
1

Np

Np∑

p=1

(

V (2)[p]−
∑

n

βnφn(X [p])

)2

.

Abusing notations we denote by V (1)[p] the pth path of results for
the MC regression on our basis φn(X ).
Such stochastic variable is an approximation to the exact
conditional expectation. The errors come from two sources:

◮ Incomplete basis (the main error)

◮ MC statistical error

In all of the regression-based methods, the choice of the basis is
the key.
Below, we treat all of our equations in the MC sense assuming that
1) averages are MC sums E [X ] = (1/Np)

∑

p X [p]
2) conditional averages are results of the corresponding regressions.
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Minimizing χ2 yields the set of equations which can be easily
solved:

V (1)[p] =
1

Np

∑

nm,p′

φn(x [p])C
−1
nmφm(x [p

′])V (2)[p′].

where
Cnm = E [φn(X )φm(X )]

is the basis function covariance matrix.

The linear operation V (2) → V (1) “mixes the paths”, i.e. a value
V (1)[p] will depend on all the paths of V (2)[p′] and X [p′].

This leads to derivatives of the regression containing cross-terms

(result at path p depend on states for all paths)

⇓

Numerix Algorithmic differentiation for callable exotics: PV and XVA 18/ 43



∂V (1)[p]

∂V (2)[p′]
=

1

Np

∑

nm

φn(x [p])C
−1
nmφm(x [p

′])

∂V (1)[p]

∂X [p′]
= δpp′V

(1)′[p] +
1

Np

∑

nm

φn(X [p])C−1
nm

×
{

φ′
m(X [p′])(V (2)[p′]− V (1)[p′])− φm(X [p′])V (1)′[p′]

}

where V (1)′[p] is the derivative of the regression result

V (1)′[p] =
∑

n

βnφ
′
n(X [p])

and φ′
n(x) is the derivative of φn(x) over its argument.

Remark. The derivative matrices size is large (Np × Np) and they
heavily mix the paths. However, their rank is equal to the number
of basis functions Nb, which is often much smaller than Np.
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Two ways to proceed for PV/XVA greeks

In AIKMM (2016) we have studied the algorithmic differentiation
for exotics pricing where we have selected two ways:

◮ Standard AD
the method works directly with the PV derivatives and
requires the instrument tape, a place in memory where we
write all the pricing/XVA operations. This memory
consumption is known to be very high. Using the adjoint pass
we use the tape ”playback” to perform the differentiation.

◮ New Backward Differentiation
The method delivers continuation values (CV) sensitivities.
The method does not require the instrument tape: the
differentiation is done an the same time as the pricing.

The standard AD for exotics was also treated in the independent
research by Capriotti at al. (2016).
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New Backward Differentiation (BD) for PV greeks

◮ This approach to the algorithmic differentiation works with
continuation values instead of the final payoffs as in the usual
AD.

◮ This allows us to avoid the instrument tape: the
differentiation is done during the backwards pricing. We note
that the simulation tape is still present.

◮ Absence of the instrument tape saves a lot of memory as well
as the time needed to access it.

◮ Moreover, it makes the code simpler and easier to debug.

◮ Finally, we can obtain greeks for all of the CVs in a pricing
script, e.g., swaptions, underlying swaps, legs, etc., in a single
pass of the BD (the usual AD procedure must be rerun for
every new payoff)
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Backwards propagation details

The backwards propagation V (t) = E [V (T )| Ft ] is the key part of
the algorithm. It transforms the info at time T

{
V (T )[p], ∂V (T )[p]/∂X (T )[p′], ∂V (T )[p]/∂θ

}

into that at time t,

{
V (t)[p], ∂V (t)[p]/∂X (t)[p′], ∂V (t)[p]/∂θ

}

Example.

∂V (t)[p]

∂θ
︸ ︷︷ ︸

t info

=
∑

p′′

∂V (t)[p]

∂V (T )[p′′]
︸ ︷︷ ︸

from the regression

∂V (T )[p′′]

∂θ
︸ ︷︷ ︸

T info

All the technical details are in A2 (2016).
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Generalization to the XVA

So far we have treated the price greeks. Now we present the more
complicated subject of the XVA greeks.

This will require so called future values (FV) which we denote with
small letters v(t). Their main difference with the CV’s is that the
FV takes into account possible exercises before the time t whereas
the CV does not.
For a general collateral, a general XVA is defined on a set of
observation dates {si}

XVA =
∑

i

E [Fi(u(s1), · · · , u(si ))/N(si )] wi

where deterministic function Fi (u1, · · · , ui ) is a generalized
portfolio exposure and wi are some weights.

Example. One-sided CSA CVA =
∑

si
E [v(si )

+/N(si )] wi
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Example: Bermudan swaption

The swap pays cashflows cj at a date Tj for j = 1, . . . ,M
→ the swaption PV is built with payments subjected to the
exercise conditions

V = E





M∑

j=1

I(Tj) cj
N(Tj )





where the global exercise indicator indicator I(Tj) equals one if we
have entered into the swap before the payment date Tj and zero
otherwise.

The global exercise indicator can be computed given the local
indicators

Ci = 1S(Ti )>V (Ti )

defined on exercise dates Ti in terms of the swaption/swap
continuation values.

Numerix Algorithmic differentiation for callable exotics: PV and XVA 24/ 43



The global exercise indicator for Tj ≤ t < Tj+1 reads

I(t) = 1−

j
∏

i=1

(1− Ci ) .

Now we can define the swaption future value (FV) for a given date
t: it is a conditional expectation of all payments on and after t

v(t) = N(t)E





M∑

j=1,Tj≥t

I(Tj) cj
N(Tj )

∣
∣
∣
∣
∣
∣

Ft



 ,

One can prove that the swaption FV can be expressed through the
CV’s and global exercise indicators

v(t) = V (t) (1− I(t)) + S(t)I(t)

In spite of its complicated and ”bespoke” structure there is an
algorithmic way to calculate it (AIM (2015)).
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BD for the FV calculations

◮ Combining the BD with the Algorithmic Calculation for the
future values we come up with the BD for the XVA

◮ For each CV and associated FV’s we calculate their derivatives
over the parameters following the differentiation rules

◮ The result is a set of derivatives

∂v(si )[p]

∂θk

for all the paths p, parameters k and observations i .

◮ Then, the calculated derivatives go to the XVA formula.

◮ We stress that the BD for the XVA does not contain the
instrument tape

Details can be found in AIKMM (2016).
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BD vs. AD for XVA calculations

◮ Speed
Both methods have comparable time: much faster than BnR.

◮ Tape and storage
The BD does not use the instrument tape. Both BD and AD
have comparable storage requirements.

◮ Multiple XVA’s
The BD delivers model greeks for all of the XVAs (CVA, DVA,
FVA etc). The AD should be rerun for each new XVA.

◮ Coding/debugging
The AD coding is complicated: it sometimes requires the
library rewriting. The tape adds a lot of complexity to the
coding, debugging, and maintenance. The BD implementation
is much simpler and compatible with the price scripting.

◮ Combination with bump-and-reprice
The BD can be combined with the BnR (but not for the AD).
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Do we always need derivatives of the regression?

Quite often we know analytical dependence of the cashflows ck
from the parameters

∂ck [p]

∂θ

We suppose that the derivatives are explicit (we have substituted
all the states dependence).

Question: can we use the derivatives of the cashflows to calculate
XVA’s or need to differentiate the results of the regression?
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PV case

Consider first our Bermudan where the exercise indicators form a
surface in the state space for each exercise date. This surface is
optimal for the Bermudan swaption price

V = E

[
∑M

j=1 Ij−1
cj

N(Tj )

]

i.e. an infinitesimal ”bump” of the

indicators as functions of parameters leads to zero

E





M∑

j=1

∂Ij−1

∂θ

cj

N(Tj )



 = 0.

This immediately gives us the PV Greek

∂

∂θ
V = E





M∑

j=1

I(Tj)
∂

∂θ

(
cj

N(Tj )

)




which requires only differentiation of the cashflows and the
numeraire.
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Thus, the optimal exercise instruments will not depend on the
exercise derivatives and the differentiation of the conditional
exercises can be avoided.

This rule can be extended to other (not path-dependent)
backward1 instruments.

To prove it we associate with any CV V (t) its “noisy derivative”
DV
θ (t) such that its conditional expectation equals to the exact

derivative of the CV

E

[

DV
θ (t)

∣
∣
∣ Ft

]

=
∂V (t)

∂θ

Remark. The noisy derivative would be exact if we were
differentiating the regression (but we want to avoid it).

1Or written in the backward way, like barriers etc.
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Algorithm

◮ When the CV is modified, the noisy derivatives will be
modified according to the differentiation rules, e.g.,

V (T−
k ) = max(V (Tk),S(Tk))

⇓

DV
θ (T−

j ) = (1− Cj)D
V
θ (Tj ) + CjD

S
θ (Tj)

or

S(T−
k ) = S(Tk) + ck ⇒ DS

θ (T
−
k ) = DS

θ (Tk) +
∂ck
∂θ

,

where ∂ck/∂θ is a real derivative of the analytically available
cashflows.
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◮ Conditional expectations for the CVs induce a simple
discounting for noisy derivatives, i.e.,

DV
θ (t−) = DV

θ (T−)
N(t)

N(T )
+ V (T−)

∂

∂θ

(
N(t)

N(T )

)

.

◮ At the origin, an expectation of the noisy derivative gives the
correct CV derivative

∂V (0)

∂θ
= E

[

DV
θ (0)

]

Limitations of the approach above are related with different time
combinations of the CV’s, i.e. path-dependence of the instrument
(e.g. the following CV update V (T−

2 ) = V (T2) 1U(T1)≥0)

Conclusion on PV greeks. For any non path-dependent backward
instrument, one can avoid the differentiation of the conditional
expectations.
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XVA case

◮ Consider a simple credit valuation adjustment (CVA) with a
deterministic hazard rate λ(t) and a deterministic collateral
C (t).

◮ Suppose that the only element of portfolio is our Bermudan.

The total instrument price

V̂ = E





M∑

j=1

Ij−1
cj

N(Tj )



− E

[∫ T

0
dt λ̃(t)

(v(t)− C (t))+

N(t)

]

where v(t) is a future value (FV) of the Bermudan and

λ̃(t) = λ(t) e−
∫ t
0 dsλ(s).

The last term is called CVA.
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The FV v(t) is path-dependent ⇒ one cannot find its noisy
derivative having information about the cashflow derivatives.
However, as shown in AIKMM (2016), we can transform each fixed
time t term

E

[
(v(t)− C (t))+

N(t)

]

into a backward instrument (effectively making the instrument
non-path-dependent) and get rid of the differentiation of

conditional expectations.

The computational cost is high: for the CVA we get

# of CVA discretization time-steps ×# of exercises

of extra regressions.

Such procedure may be much slower than the regression
differentiation!
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Collateral influence

Consider a portfolio of vanillas with the noisy derivatives coinciding
with the cashflow derivatives, i.e. E [Dv

θ (t) | Ft ] = ∂v(t)/∂θ.
Establish conditions on the collateral when the cashflow derivatives
are sufficient for the XVA Greeks.

The simplest case: collateral as a deterministic function of the
portfolio value at the same time, i.e. C (t) = C (v(t)).
Derivatives of the loss function f (v) = (v − C (v))+ ⇒

∂E [f (v(t))]

∂θ
= E

[
∂f (v(t))

∂θ

]

= E

[

f ′(v(t))
∂v(t)

∂θ

]

= E
[
f ′(v(t))Dv

θ (t)
]

Conclusion. A Greek for a single time average of the vanilla
portfolio FV depends only on cashflow derivatives (see also
Andreasen (2014) for f (x) = x+).
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General collateral

◮ For a multi-time dependence of a general XVA

E [f (v(t1), · · · , v(tn))]

corresponding to a general collateral with non-zero minimum
transfer amount and threshold such property is not valid.

◮ However, one can employ a branching diffusion as was first
suggested in Andreasen (2014) for f = (v(tn−1)− v(tn))

+.

◮ If we have a general path-dependence for the XVA, the
branching logic becomes cumbersome (n re-simulations for
timestep tn), slow and hard to control on the script level.

Thus, for a general XVA with a general collateral one should

differentiate the conditional expectation.
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Summing up

Conditions when the cashflow derivatives are not sufficient (or it is
too slow to avoid differentiation of conditional expectation) to
calculate XVA Greeks:

◮ The portfolio contains Bermudan/American options which are
exercised in the usual risk-free way

◮ The collateral is generally dependent on multiple time horizons

For other cases, mainly representing vanilla portfolios with a simple
collateral, it is sufficient to use cashflow derivatives for XVA
Greeks.
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Numerical experiments

◮ We numerically demonstrate the efficiency of the backward
algorithmic differentiation using the HW1F model with
constant parameters: the volatility is 2%, the reversion is 5%,
and the rate is 2%.

◮ The exotic instrument in hand is a 10-year Bermudan ATM
swaption with coinciding quarterly fixing and exercise dates
from 0.25 years to 10.25 years. The payment dates are shifted
forward by 0.25 years.

◮ The swaption price is 0.107 for a unit notional.

◮ We use 12 observation dates per year: 126 in total. This
results in 252 regressions both both swap and swaption.
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◮ We cover two experiments: the first one is related to the PV
Greeks while the second one with the XVA Greeks. We
calculate sensitivities to different buckets of the volatility
(Vega) and forward rates of the yield curve (Delta).

◮ We bump these parameters either on the annually spaced
intervals (11 buckets) or on the quarterly intervals (43
buckets).

◮ For both experiments we perform Monte-Carlo simulation
5,000 high-quality, low-discrepancy paths with 126 time steps.
The conditional expectation is calculated with regression on a
set of 17 smooth basis functions similar to Carriere (1996).

◮ We present timing of our new method, alternative to the AD,
called Backward Differentiation (BD) vs. bump-and-reprice
(BnR) and acceleration results (greeks profiles as well as
convergence analysis can be found in AIKMM (2016))
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# of Vols # of Rates Pricing BD BnR BnR/BD BD/Pricing

11 11 0.7 1.3 15.3 12.2 1.8

11 43 0.7 1.5 36.9 24.4 2.2

43 43 0.7 2.5 59.2 23.5 3.7

Table: Time (sec) for Pricing Greeks with regression differentiation

# of Vols # of Rates Pricing BD BnR BnR/BD BD/Pricing

11 11 0.7 0.8 15.2 20.2 1.1

11 43 0.7 0.8 38.3 46.5 1.2

43 43 0.7 1.0 58.6 57.2 1.5

Table: Time (sec) for Pricing Greeks without regression differentiation

# of Vols # of Rates XVA BD BnR BnR/BD BD/XVA

11 11 1.8 3.9 39.4 10.1 2.2

11 43 1.8 6.8 97.1 14.3 3.8

43 43 1.8 11 155.1 14.1 6.1

Table: Time (sec) for XVA Greeks with regression differentiation
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Observation

According to the AD rule of thumb (the AD is 4-10 times slower
than the pricing) the BD performs favorably:

◮ Pricing greeks
up to over 20 times faster than the BnR with regression
differentiation, and almost up to 60 times faster without it.

◮ XVA greeks
up to over 15 times faster than the BnR
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