CVA on an 1Pad Mini
Part 4: Cutting the IT Edge

Aarhus Kwant Factory PhD Course
January 2014

Jesper Andreasen
Danske Markets, Copenhagen
kwant.daddy@danskebank.com

Outline
e |ntro.
e Multi threading:
- Why parallel computing is hard.
- Hardware and GPUs versus CPUs.

- C++ standard.

e Adjoint differentiation:

The magic of adjoint differentiation.

C++ implementation: templates and tapes.
Memory limitations and gate checking.
What else can go wrong?

- AD In finance.

e Summary.

Intro

e S0 we have achieved fast CVA calculation using all the trickery we can do
with models and CVA calculation algorithms.

e Two questions?

e Can it go faster?

e \What about risk reports, i.e. how the CVA values change as market prices
(rates, prices, volatilities) change?

e To go even faster on the pricing we are going to use MT, i.e. use multiple
computer cores in parallel.

e To do fast risk we are going to do the magic AD in conjunction with MT.

Parallel Computing

e Many financial calculations are (or appear) trivially parallelizable, i.e. can
be computed over many computer cores at the same time.

e Most obvious example is Monte-Carlo simulations where the different paths
are delegated out on different computer cores.

e However, the industry has generally not used real parallel computing in large
scale.

e There is long list of reasons for this:

e Typically, parallelizing over trades give the same benefits — for big nightly
runs, at least. And this is a very simple trick to use.

e \Writing parallel code is actually a lot harder than one might think.

e The benefits obtained by improving algorithm have traditionally (and still
do) generally outperform the benefits of more massive computing.

Parallel Algorithms

e It is difficult to write parallel code and even more so for highly optimized
and sophisticated algorithms.

e Say for example that we are using Sobol sequences for Monte-Carlo
simulation.

e \We want to spread the 1024 simulations on 8 cores with 128 simulations on
each core so that core 0 does simulation 0 to 127, core 1 does simulation 128
to 255, etc.

e S0 we need to be able to skip in the Sobol sequence.

e My guess is that less than 20 people on the planet would know how to do
this. More can figure it out ... but still.

e Here is the solution, btw:

// skip ahead
void
kSobol: :skipAhead (
unsigned long long skip) // Argument = number of entries to skip
{
// Check skip
if (!skip) return;

unsigned int i;

// Reset Sobol to entry 0 (not 1, hence must reset even though reset has already been called in init)
for (i=0;i<mySobolDim;++1i) myIntegerSequence (i) = 0;

myRandomGenerator.reset () ; // Also reset the random generator

// The actual Sobol skipping algo

unsigned long long im = skip;

unsigned int two 1 =1, two i plus one = 2;

i=0;

while (two i <= im)
{ if (((im + two_ i) / two i plus one) & 1)
{ for (unsigned int k=0; k<mySobolDim; ++k)
{ myIntegerSequence(k) "= myDirectionIntegers(k, 1);

}

two 1 <<= 1;
two 1 plus one <<= 1;

++1i;
}
// End of skipping algo
// The random generator must also skip

if (mySimDim>mySobolDim) myRandomGenerator.skipAhead(skip * (mySimDim - mySobolDim)) ;

// Update next entry
mySimCount = unsigned long(skip);
next () ;

Non Thread Safe Code, Tools, and Memory

e Another reason is that, existing code has been highly optimized for single
threaded use.

e This generally means that quants throw out all the good advice of Bjarne
Stoustrup about C++ standards — and make their code non-thread-safe — but
fast.

e Thread safe means that memory can be read from different cores but
different cores should not write to the same memory at the same time.

e Thread safe code 1s normally obtained by ensuring that objects don’t change
their internal state during valuations.

10

e The non-thread-safeness is most often the result of using caches of
Intermediate values to speed calculations.

e To rewrite non-thread safe code as thread safe, ie eliminate the caches,
without performance hits can be very hard and very few people can do it.

e The tools for writing multi-threaded code are poor and non-standard:

- One often needs to use hardware and operative system specific features.
- Debuggers are poorly developed for MT code.

e Hardware is optimized for single threaded calculations, and at some stage,
memory handling and memory bandwidth becomes the bottle neck.

11

Hardware and Computers

e A computer looks like this

CORE 1 CORE 2

CORE 3

CORE 4

L-CACHE ~ 1MB

A

A 4

MAIN MEMORY ~1GB

e The cores do the calculation and can do so very quickly on the data that is in

the cache.

e The stuff that is the main memory has to go into the cache before it can be

computed on.

12

e A CPU based computer has 4-6 cores, 1-10MB cache, 8-100GB of main
memory, and a quite effective operative system for automatically moving
memory between main memory and the cache.

13

GPUs

e A GPU based computer has 16-1024 cores, 1-16KB cache, and 8-100GB of
main memory, but no operative system for moving memory between the
main memory and the cache.

e On a GPU, the memory handling has to be manually coded by the
programmer.

e S0 the GPU has a lot of horse power but almost no fuel tank.

e This means that it is extremely resource demanding to code anything but the
most simple models and interfaces on GPUs.

e Getting something like Jive on the GPU would be almost impossible.

14

e A new programmer is needed every time you want to do a new product.

e Further, the technology changes all the time. New versions of the GPUs
come out and they require new code and the old code will not run on them.

e Besides that, best speed performance that people report is of a magnitude of
a factor 50 — not 1000.

e We tried the GPUs but ended concluding that they are not compatible with
our code and model philosophies.

15

CPU

e 128 core CPU machines exist and they are about the size of a small oven. It
would cost you around 500,000 DKK.

e Similar GPU power would probably cost you around 50,000 DKK and the
physical size would be only a tad smaller.

e S0 need to buy a lot of computer power to balance hardware savings against
skilled programmer salaries.

e Further, the new C++ standard as of 2011 includes sophisticated MT features
In the C++ language.

16

e This means that C++ MT development done on Windows will be
transferable to Linux, Unix, Mac, Android, whatever — provided that these
platforms have modern compilers.

e This includes shared memory, ie that the different cores simultaneously
work on (read from) the same memory.
e S0 use of CPUs is the direction that we have taken.

e But we have not gone massive scale yet. Our biggest machine has 16 cores.

17

CVA and Multi Thread’ing

e Currently, we are using MT’ing for Monte-Carlo simulation (including Jive),
Longstaff-Schwartz regression and some calibration.

o All Jive parsing, processing, compression, and decoration is still single
threaded.

e For risk, we have M T ’ed the AD based simulation but not the “Jacobian”
calculations.

e S0 in the examples I’ve shown, there are still some speed ups to be made.
e It took us about 3 months to MT the (non-AD) Beast simulations.

e The rest of the time has been spent on AD and risk.

18

The Magic of Adjoint Differentiation
e Consider a function
fRN>R
e ... and the value
y="1(x)
e The magic of AD allows you to compute all the n derivatives

o i_
8_xi 1=1...,n

e ... at the (theoretical) computational cost of 4 times the cost of computing y.

19

e In practice it is more like a factor 8 than a factor 4.

e S0 if N=1000 and it takes one second to compute the value of y then it will
take only 8 seconds to compute all the 1000 partial derivatives

Oy 10X,y -, Oy 10X,

e That Is magic and nothing less than a game changer.

e First of all, because in our industry 95% of the calculation time is spent on
calculating risk reports, ie partial derivatives, by bumping the inputs and re-
computing prices.

e Secondly, it opens up for models we have not really attempted to do before
on an industrial scale.

20

e For example:
- Calibration by Monte-Carlo.

- All sorts of variations on non-linear pricing: transaction costs, feedback
effects, etc.

e S0 how does i1t work?

21

o y=xl+log(x1+ 2 * x4)

wl+loglxnl+Z2xd)

Ay=1
Al+=1
Al0=0 0 y
AB=1(x1+2ud) loginl+Zud) >
Al+=Ab x1+2x4 =+
Al=A+1I{x1+2x4) b = 06 of AT+=1
- %)

AG+=1/46%AT AT=1
%2 AS=1/(x1+2x4) AS+=AB

Templates and Tapes
e AD can be implemented by hand coding the adjoint derivative calculation.

e This is the methodology used in some places including Credit Suisse,
Nomura, OpenGamma.

e It is, however, a quite manual procedure and not particularly SuperFly.

e C++ has two build-in features that enables the implementation in a very
elegant way.

e These are called templates and operator overload.

23

e First step is to templatise the code a la:

// templated bs call function

template <class T>

T callT(T expiry, T strike, T forward, T sigma)
{

T v = sigma*sqrt (expiry);

T x = log(forward/strike) /v + 0.5*v;

T ¢ = forward*normalCdf<T>(x) - strike*normalCdf<T> (x-V) ;
// done

return c;

e Under normal use we would use the function as

double expiry = 2.0;
double strike = 1.0;
double forward = 0.9;
double sigma = 0.15;

double value = callT<double> (expiry,strike, forward, sigma) ;

24

e \When you compute derivatives

// records tape -- forward

kDoubleAd expiry = 2.0;

kDoubleAd strike = 1.0;

kDoubleAd forward = 0.9;

kDoubleAd sigma = 0.15;

kDoubleAd value = callT<kDoubleAd> (expiry,strike, forward, sigma) ;
// now do the ad -- backward

kAd ad(false);

ad.initDerivs () ; // sets all derivs = 0

value.deriv() = 1.0; // sets deriv on value = 1
ad.evalBwd (value) ; // run tape backward

// pick up results

double dExpiry = expiry.deriv();
double dStrike = strike.deriv();
double dForward = forward.deriv () ;
double dSigma = sigma.deriv () ;

e What happens in this code is that the object kDoubleAd is constructed so
that it automatically records all operations on a piece of static memory, the
so-called tape.

e This is done through by using another feature of C++ called operator
overload.

e That Is, the object kDoubleAd has +-*/ operators and functions such as
sqrt(), exp(), log(), etc that replace (overload) the standard ones that work on
double.

e The code for these operators and functions will automatically put the
operations on tape.

e This happens in the function call callT<kDoubleAd>().

26

e \When the tape been recorded, we set the derivatives on the variables and run
the tape in “reverse”, ad.evalBwd().

e This corresponds to the backward sweep to obtain the derivatives in our
simple example.

e Once the backward sweep is performed, the derivative values can be read off
the kDoubleAd variables, as in for example double dSigma = sigma.deriv().

o Actually, what happens is that the kDoubleAd contains a pointer to where on
the tape it sits.

27

Memory Limitations and Gate Checking

e S0 In principle, it is possible to simply templatize existing C++ code and
combine it with some kDoubleAd object code.

e Then record one big tape in forward mode and compute all derivatives in
backward mode.

e This, however, would only work for the most simple functions and models.

e The problem is that computers are so fast that they can fill up lots of
memory very fast.

e A single core will write approximately 1GB of tape per second.

28

e Even if you can have 1GB of memory in your computer, you can only really
efficiently access it if is in the cache, which is ~ 1-10MB.

e The solution to this to break up the problem of computing to a chain of
(forward) calculations

X0 X1 ... XNl xn

e Doing so is not only a trick to handle memory, it also facilitates caching of
Intermediate values in the total calculation.

e The requirement is that the code is broken up so that each step

xirsxitl (R >R

29

e ... is Markov. In the sense that xi+1 need to be produceable from x! only, i.e.
there exists some function fi:R" —R"i+ so that

Xi+l: f i(Xi)

e [f the end value y is an element of xn, i.e. yzx? , then we start the

recursion by setting the derivatives
oy _
X =)

e For each step xk-1— xk we now use the template/tape machinery combined
with the initial boundary condition 8y/oxk-1=0 to produce

30

oy

8xk—l
e The chain is now run backwards step by step to produce the final result

oy

ox0
e Note that in each step we do not explicitly produce the Jacobian matrix

8?()‘i|il e Rk

e Instead over each step we start with one vector dy/oxk and produce another
vector oy/oxk-L,

31

e This technique also works with finite difference grids and it naturally breaks
down the code in thread safe blocks that potentially can be multi threaded.

32

AD of Monte-Carlo Simulations

e Suppose we produce the value of some product y by Monte-Carlo
simulation

1 .
y_WJZ::lg(a)j,X)

e ... where X Is a vector of model parameters and @,,...,,, Index different
paths of a Brownian motion.

e It does not seem memory efficient to compute oy/ox the derivatives in one
go.

33

e Clearly, it seems more memory efficient to compute the derivatives oy/ox;
path by path and then take the average. That is,

oy 13 8g(a)j;x)
ox N =

e S0 the tape is rewound and re-recorded for each path of the Brownian

motion ;.

e Further, we note that the size x can be very large.

o |f for example x is the parameters of a finite difference grid of dimension
(txsx7)=IR100:100<100 then the x vector is of dimension O(106).

34

¢ In this case we do not want to visit all elements of the vector x to record their
derivatives.

e For a particular path @;, We only want to visit a particular element x and

pick up its derivative If the parameter x. has been hit over this path.

e \We have developed C++ machinery that puts the parameters that are hit over
a particular path on a stack.

e Normally, the kDoubleAd contains a pointer to an operation on the tape.

e But this Is the reverse: a stack whose elements points back to the
kDoubleAd.

35

Anything Else?
¢ Quite a lot, actually. Here are some examples.
¢ Values can be correct without the derivatives being so.

e The trouble is that (very) often you record a long tape in forward mode but
then you don’t run into trouble before you start computing the derivatives.

e \What happens here is typically that parameters have the right value from
before the last time the tape was rewound but the wrong derivative.

o Effectively, the parameter never went on tape in the present calculation.

e Spotting where this happens can be a nightmare because you can’t see 1t in a
debugger.

36

e The way to check this is to make sure that all inputs to operators and
functions are already on tape.

e This check costs but you can set yourself up so that this is only checked
when running in debug.

e Itis a bit like the bounds checker that is used for vectors classes in C++.

e Another classic: functions may be perfectly well-defined on a closed interval
but their derivatives are not, for example

f (X)=vX: [0,00[—[0,d]
f'(x):z_lﬂ: 10,00[—10,oc]

37

e Had to replace the use of the STL std::complex with a new homemade
kKomplex class due to this.

e When you want to multi thread AD calculations for example for individual
paths in Monte-Carlo then you need a tape for each thread.

e Implementing this is in itself not trivial and it puts further constraints on the
cache.

e Generally, it isn’t computing the risk reports with respect to a monster many
parameters in that take the coding time.

e \Where most of the hard work is spent is on curling these monster many risk
parameters back to the conventional risk reports that we use in trading.

38

AD In Finance

e The idea of AD Is, as far as | know, a relatively new technology that dates
back only a few decades. But in finance it is even younger.

e The first use of AD in finance that | know of was David Price at Bank of
America, Chicago, who in 2002 implemented an ultra fast yield curve
construction method based on tapes and overloads.

e The technology started gathering interest when Giles and Glasserman

received the quant of the year award in 2006 for a paper on AD applied to a
Libor Market model.

e Their code was based on classes created by Ole Stauning, who had written a

PhD on AD and other computational methods in mathematics at DTU early
2000s.

39

e Interestingly, | have worked with both David Price at BofA and Ole
Stauning at Nordea without picking up anything...

e | didn’t start getting seriously interested before | saw presentations by Luca
Capriotti (Credit Suisse) and Martin Baxter (Nomura).

e Generally, AD is picking up interest but real large scale applications are few.

e Most presentations that | have seen are either on particular subjects such as
yield curve construction or “proof-of-concept”.

e The first reason is that people haven’t really understood it yet.

40

e The second reason it is really hard to do it for very complicated models. Or
rather, to pull it through the full hierarchy of models that such models sit on
top off.

e | recently spoke to a consultant on AD and he said that, by far, most of the
work he was doing was for weather forecasting and the automotive industry.

4

Is AD the new Black?
e | think it might be, for several reasons.

e For the purpose of CVA it enables us to bring the risk reports to the front
line and use these for structuring our clients’ portfolios.

e |t may also help on improving the quality of the regressions used for CVA
and for options.

e But the real lift could be if it allows us to start thinking about using models
that can only be solved numerically.

e The bottle neck is terms of model sophistication is usually always analytical
tractability and/or quality of data for input for calibration.

42

e With AD and MT combined it seems natural to start thinking about models
that are calibrated by Monte-Carlo.

e Further, there are various types of non-linear pricing problems where AD
could be very interesting.

e For example, dynamic hedging under transaction costs. A problem that is
normally left to trader intuition, rules of thumb, and wet fingers in the air.

e Transaction costs are proportional to local (cross) gamma. Of the total
portfolio — not a single claim.

e AD doesn’t directly give us the local gamma but it gives us the local risk to
variance/covariance and these two quantities are related.

43

e Another example is feedback and optimal liquidation of large stock
positions.

44

Summary
e Turbo charging our CVA model has been a longer journey than we thought.

e The feeling through this has been a bit like climbing a mountain. You can
see the peak in the distance but once you get there you realize there is
another higher peak behind it.

e We have had to invent and re-invent a lot of trickery as we have gone along.
e That said, we feel that it has been worth it.

e Particularly, we think that AD could be a game changer in terms of practical
modeling technology.

45

