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[¢] Outline

= Calculating Risk with Monte Carlo ... Fast

= Adjoint Formulations of the Pathwise Derivative Method

= Limitation of “"Algebraic” Adjoint Methods

= Algorithmic Adjoint Approaches

= Adjoint Algorithmic Differentiation (AAD) in a nutshell

= AAD and the Pathwise Derivative Method: Adjoints made easy

= A preview of Real Time Counterparty Credit Risk Management’

" Conclusions
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[¢] The Setting: Pathwise Derivative Method

= Monte Carlo Expectation Values

V(6) = Eq|g(X(T1), .., X (Tur))

... and sensitivities
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[8] Pathwise Derivative Method: Challenges
& ag(x) X,

0, — dg(X(9)) _ v
v 89k an aek
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Since the variance of the estimator is comparable to the one of
finite differences, all this is worth the hassle if the resulting computational
time is significantly lower than the one of Bumping

< L

We need an efficient way to calculate:

1. Simulation of the Tangent Process

2. Derivatives of the Payout
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[] “Algebraic” Adjoint Methods

Giles and Glasserman’s' Smoking Adjoint’, Risk Magazine 2006
Leclerc et al., Risk Magazine 2009
Joshi et al., several preprints

|:> Libor Market Model & Swaptions

|:> Concentrate on the efficient Simulation of the Tangent Process

In a nutshell:

1. Formulate the propagation of the Tangent process in terms of Linear Algebra Ops

2. Optimize the computation time by rearranging the order of the computations

3. Implement the rearranged sequence of operations
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[¢] “Analytic” Adjoint Methods
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[¢] “Analytic” Adjoint Methods
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Giles and Glasserman, Risk Magazine 2006

Arbitrary number of sensitivity at a fixed small cost
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[8] Limitations of Analytic Adjoint Methods

= MM is bit of an ad-hoc application ...

Difficult to generalize to Path Dependent Options

= The required Algebraic Analysis is in general cumbersome

= Not general enough for all the applications in Finance

= The derivatives required are often not available in closed form

= What about the derivatives of the Payout?
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[8]1 Algorithmic Adjoint Approaches: AAD

= Adjoint implementations can be seen as instances of a programming
technique known as Adjoint Algorithmic Differentiation (AAD)

= |n general AAD allows the calculation of the gradient of an algorithm at a cost that
a small constant (~ 4) times the cost of evaluating the function itself, independent

of the number of input variables.

The Payoff estimator is a 0 N g (X (0))

mapping of the form

AAD gives all the Risk estimators 0_ _ ag(X(e))
A—

for a small fixed cost aek
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[®1 How do AAD work anyway?
Y = FUNCTION(X)
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[61 AAD as a Design Paradigm

= AAD can be used as a design paradigm even for large inhomogeneous
algorithms

= Address both aspects of the implementation of the Pathwise Derivative Method

dg(X)

Derivative of the Payout L.C., Journ. Comp. Fin. (2011)

0X,
Tangent Process aX] ((9)
00},
g = 9X(0) N 99(X) 09X,
00 S 0X; T 9

= | inear combination of the columns of the Jacobian

= All the Greeks at a cost that is a small (~4) multiple of the PV estimator
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[®] Diffusive Setting
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[8] Lognormal Example
X(t,11) = PROP,(X (t1), 0)
= Step 1
p=rX(tn)
= Step 2
¥ =o0X(tp)
= Step 3

P = (=7 2)At Y VALZ

= Step 4

X(tn+1>
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CREDIT SUISSE

(X (tp),0)+=PROP_by(., X(t;11))
_ AN
= Step 1

X (ty)+=par Op+=pX(tn)
= Step 2

X(tp)+=20 O0s+=X(ty)
= Step 3

i = R RAt
Y = RR(—XAt+ VALZ)
® Ste ep
X(t)+ =X (tys1) R
R=X(tp+1) B

Luca Capriotti — Algorithmic Differentiation: Adjoint Greeks Made Easy



[8] Best of Asian Option
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L.C., Journ. Comp. Fin. (2011)
L.C. & Mike Giles, preprint (2011)
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[8] Back to the LMM test ground
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A preview of:
[¢] “Real Time Counterparty Risk Management in Monte Carlo

= Risk manage CVA/DVA is challenging because all the trades facing
the same counterparty must be valued at the same time, typically

with Monte Carlo

= AAD is naturally suited for this task

No
Vova = ZE[H(Ti—l < 1. <T;)D(0, T;)
1=1

X LGD(Ti)(NPV(Ti) - C(R(T;)) )+]

ﬁCpty Rating
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A preview of:
“Real Time Counterparty Risk Management in Monte Carlo”

= A new challenge: Rating Dependent Payoffs

P (T3, R(T3) ZP Or,R(T;)

Rating Transition Markov Chain model (Jarrow, Lando and Turnbull ‘97)

R(T;) = %H (28> Q(T,))

ﬁ Quantile Threshold

= The Rating state space is discrete (hence the Payoff is non Lipschitz)
= The Pathwise Derivative method gives only part of the Risk

CREDIT SUISSE Luca Capriotti — Algorithmic Differentiation: Adjoint Greeks Made Easy



A preview of:

“Real Time Counterparty Risk Management in Monte Carlo”

Singular Contribution:
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! ‘ Can be integrated out analytically

Variance Reduction vs. Bumping:
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A preview of:
“Real Time Counterparty Risk Management in Monte Carlo”

= Test Application: Calculation of risk for the CVA of a portfolio of 5 commodity
swaps over a 5 years horizon (over 600 risks)
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L.C., J. Lee and M. Peacock, preprint (2011)
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iving Back” to Natural Sciences

THE JOURNAL OF CHEMICAL PHYSICS 133, 234111 (2010)

Algorithmic differentiation and the calculation of forces by quantum
Monte Carlo

Sandro Sorella'?? and Luca Capriotti®°)

ISISSA, International School for Advanced Studies, 34151, Trieste, Italy

2 DEMOCRITOS Simulation Center, CNR-IOM Istituto Officina dei Materiali, 34151, Trieste, Italy

3 Quantitative Strategies, Investment Banking Division, Credit Suisse Group, Eleven Madison Avenue,
New York City, New York 10010-3086, USA

Experiment
—— Present work

Opens the way to Monte Carlo simulations

5= "H¥ based on first principles Quantum Mechanics
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Iterations
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[¢] Conclusions

= Algebraic Adjoint approaches can be seen as specific instances of a more
general paradigm: Adjoint Algorithmic Differentiation (AAD)

= AAD can be employed to evaluate efficiently option sensitivities for virtually any
model and financial security encountered in practice

= AAD allows the calculation of the Greeks in at most 4 times the time necessary
for calculation of the P&L of the portfolio

= Rjsk is calculated orders of magnitude faster than standard bumping, thus
producing a significant reduction in infrastructure costs, and allowing “real time”
monitoring of Risk and more effective hedging strategies

= Preview of: Real Time CCRM
= Analytical Integration of the Rating Singular Contribution

= Additional significant Speed Up coming from Variance Reduction
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