STCE

voxd £(int n, doubler x,

int m, doublex y) { +
ax \\{

(Adjoint) Algorithmic Differentiation
[(A)AD]

A Hands-On Introduction

Uwe Naumann

LuFG Informatik 12: Software and Tools for

Computational Engineering, RWTH Aachen University,
Germany

and

The Numerical Algorithms Group Ltd., Oxford, UK

it
v

o>

Introduction

First-Order(A)AD
Prerequisites
Tangents
Adjoints

Second-(and Higher-)Order (A)AD
Tangents of Tangents

Tangents of Adjoints

“Getting Serious” with AAD
Implementation by Overloading
Checkpointing

Symbolic Adjoints

Adjoint Code Design Patterns

«4O» «4F)>» «=)>»

« =

o>

Progress

Introduction

©Uwe Naumann, 2017

<O <S>

it
v
a
it
v

Q>

The Art of Differentiating Computer Programs STCRE“H
Bumping?

For differentiation, is there anything else?
Perturbing the inputs — can’t imagine this fails.
| pick a small Epsilon, and | wonder ...

from: “Optimality” (Lyrics: Naumann; Music: Think of Fool's
Garden’s “Lemon Tree”) in Naumann: The Art of Differentiating
Computer Programs. An Introduction to Algorithmic Differenti-

ation. Number 24 in Software , Environments, and Tools, SIAM,
2012. Page xvii

©Uwe Naumann, 2017 «Or «Fr o«

i
v
a
i
v
it

DA

The Art of Differentiating Computer Programs RWTH

STCE
Story

> inspired by sensitivity analysis, uncertainty quantification, calibration /
optimization

finite differences (first- and second-order), symbolic, algorithmic
implementation by overloading, source trafo, hand-coding
real code

sensitivity analysis as modelling and software engineering tool
what matters

vV VY Vv Vv Yy

> user expertise
> tool quality
> tool sustainability and support

©Uwe Naumann, 2017 «O>» «Fr «=>» d

i
v
it

DA

The Art of Differentiating Computer Programs STCRE“H
Summary of Results

Lety=F(x), F:R" - R:
1. tangent AD: y!) = VF -x() = VF at O(n) - Cost(F)

. adjoint AD: x(1) = VF” - yq) = VF at O(1) - Cost(F)

3. 2nd-order tangent AD: y(1:?) = xMWT V2F . x® = V2F at
O(n?) - Cost(F)

4. 2nd-order adjoint AD: xg; =y VE? - x? = V2F at O(n) - Cost(F)

and V2F - x®) at O(1) - Cost(F)

©Uwe Naumann, 2017 «Or «Fr o«

i
v
a
i
v
it

DA

Aims of this Course

STCE
You will learn how to

> implement tangent and adjoint versions of a Monte Carlo /
Euler-Maruyama solver for parameterized scalar SDEs

» ensure feasibility of adjoint Monte Carlo simulation through pathwise
adjoints

> “get serious” with AAD (tools, checkpointing,
patterns, ...)

symbolic adjoints, design

@©Uwe Naumann, 2017

«O> «Fr «=)>» <

DA

Case Study STC“E“H

Euler-Maruyama

We are looking for the expected value E(z) of the solution z(p,T),T > 0 of
the scalar stochastic initial value problem

dr = f(z(p,t),p,t))dt + g(z(p,t), p,t)dW

with Brownian Motion dW and for z(p,0) = 2°.

Forward finite differences in time with time step 0 < 6§t < 1 yield the explicit
Euler-Maruyama evolution

=gt 4 6t f(2t,p,i- 0t) + Vot - g(at, p,i- 6t) - AW’
fori=0,...,n—1, target time T = n - §t, parameter vector p € R', and with

random numbers dW* drawn from the standard normal distribution N (0, 1).

The solution E(x) is approximated using Monte Carlo simulation over (a
sufficiently large number of) Euler-Maruyama paths.

We are interested in sensitivities of the final state E(z) wrt. p.

©Uwe Naumann, 2017 «O>» «Fr «=>» d >

A 8

Motivation STC“E“H
Race (Euler-Maruyama m = 10*,n = 10%,1 = 10?)
> primal: primal.cpp (inspect)
» bumping: £d.cpp (inspect)
> tangent: tangent.cpp (live)
> vector tangent: tangent_vector.cpp (inspect)
> adjoint: adjoint.cpp (live)
> pathwise adjoint: adjoint_pathwise.cpp (inspect)
mode run time (s) memory size (b) accuracy
bump 10.9 ~ O(1) ~ P -
tangent 21.5~0(2-1) ~2.P +
vector tangent 13.6 ~ O(2-1) ~P+P-l +
adjoint 0.3~ 0(1) ~2-P+2-m-n-8 +
pathwise adjoint 0.5~ 0(1) ~2-P4+2-(m+n)-8 +

where P denotes the memory requirement of the primal code.

@©Uwe Naumann, 2017

«O> «Fr «=)>» <

>

DA

Motivation ,
. . STCE
Adjoint Nice To Have? :

res penad, addepin, 00000 bin 0000000035 2+2lev | minimax=0.00101 / 185

MITgem, (EAPS, MIT)

in collaboration with ANL, MIT,
Rice, UColorado

J. Utke, U.N. et al: OpenAD/F: A
modular, open-source tool for automatic
differentiation of Fortran codes . ACM
TOMS 34(4), 2008.

250 30 350

Plot: A tangent computation / finite difference approximation for 64,800 grid
points at 1 min each would keep us waiting for a month and a half ... :-(((We
can do it in less than 10 minutes thanks to adjoints computed by a
differentiated version of the MITgem :-)

(@©Uwe Naumann, 2017 «O)>» «F»r <«

it
v
a

i
v

Uy

A 10

Fundamental Mathematics

RWTH
STCE

» continuity
» differentiability?

2
4
&2
S
K5
S5,
S
55

» gradient, Jacobian, Hessian, higher-order derivative tensors
» Taylor expansion
» chain rule

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

A

11

Progress

First-Order(A)AD

©Uwe Naumann, 2017

Oy Fr (=»

it
v

DA

12

First-Order (A)AD

Prerequisites: Feasible Target Code |

STCE
1. The given implementation of F: R" — R™ : y = F(x), can be
decomposed into a single assignment code (SAC)

v; = i) = 2

v; = @; ((vk)k<;)

.....

j=n
Uk = Prtqrk(Vnipik) = Uniprk

k=0
argument of ;.

.....

where ¢ = p+m and k < j denotes a direct dependence of v; on vy, as an

2. All elemental functions ¢; possess continuous partial derivatives

do;
dj,i = ﬁ

o, (Vk) k<

with respect to their arguments (vy)x~<; at all points of interest.

@©Uwe Naumann, 2017

«O0)>» «F»r»r « =

> <

A

13

First-Order (A)AD

Prerequisites: Feasible Target Code Il

STCE

3. A linearized SAC (ISAC) is obtained by augmenting the elemental
4.

assignments with computations of the local partial derivatives d; ;.

The SAC induces a directed acyclic graph (DAG) G = G(F) = (V, E)
with integer vertices V = {0,...,n + ¢} and edges
VxV2OE={@\j):i<j}

5. The set of vertices representing the n inputs is denoted as X C V. The m
outputs are collected in Y C V. All remaining intermediate vertices belong
toZ CV.

A linearized DAG (IDAG) is obtained by attaching the d;; to the
corresponding edges (4, j) in the DAG.

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

A

14

Flrst—(')llfder (A?AD k.
Prerequisites: Chain Rule on IDAG

~z:i=H(x) _
SAC 3 Glen) DAG IDAG: @
VF(x) = ay _

> [T 4.

patheIDAG (i,j)Epath

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

>

A 15

First-Order (A)AD ST

Combinatorics of Chain Rule

» U. N.: Optimal Jacobian accumulation is NP-complete. Math. Prog.
112(2):427-441, Springer, 2008.

Proof by reduction from ENSEMBLE COMPUTATION
» U. N.: Optimal accumulation of Jacobian matrices by elimination methods

on the dual computational graph. Math. Prog. 99(3):399-421, Springer,
2004.

Example: bat graph in STCE logo

» A. Griewank and U. N.: Accumulating Jacobians as chained sparse matrix
products. Math. Prog. 95(3):555-571, Springer, 2003.

Example: R* - R? - R? - R? - R*

@©Uwe Naumann, 2017 «Or (Fr <= o«

>

A 16

Tangents

Mathematician's View

STCE

A first-order tangent model F() : R" x R" — R™ x R™,

Y — 1)
=Y (x,x'%"),

defines a directional derivative alongside with the function value:

y =F(x)
y) = VF(x) cx(M

definition of the whole Ja-
cobian column-wise by input di-
rections x(1) € R™ equal to the
Cartesian basis vectors in R".

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

>

A

17

Tangents

RWTH
Computer Scientist's View

STCE

A first-order tangent code (M) : R™ x R” x R - R™ x R™ x R™

—
- N
N2

= F(l) (X7 X(1)7 5’() Z’ Z(l)’ i)’

< Q<7_7<< N

computes a Jacobian x vector product alongside with the function value:

e
w
R
<N
=2z
.”.
<
=
>
»
N
N

A
)| L

A

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

v
it

18

Tangents

Computer Scientist's View

STCE

Variables for which derivatives are computed are referred to as active; x and z
are active inputs; z and y are active outputs.
Variables which depend on active inputs are referred to as varied.

Variables for which no derivatives are computed are referred to as passive; X
and z are passive inputs; z and y are passive outputs.

Variables on which active outputs depend are referred to as useful.
Active variables are both varied and useful.

The whole (dense) Jacobian can be harvested column-wise from the active

output directions (z(1),y())T € R™ by seeding active input directions
(x1),z)T € R™ with the Cartesian basis vectors in R".

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

A

19

Tangents

Computer Scientist's View (Simplified)

STCE

A first-order tangent code F() : R" x R"” — R™ x R™,

Y — 1)
= Y (x,x'"),
<y(1)> ()

computes a Jacobian x vector product alongside with the function value:

y i=F(x)

yM = VF(x) L x(D

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

A

20

Ta ngents

Conceptually

Fori=0,...,n—1

©i (V) ki
dp: (Vi) k<

(3 .
h =
'UE) ZJ'<L d/l)j
Yi o Vntpti
ygl) =@

n4-p+i

@©Uwe Naumann, 2017

(O «Fr <=

«E»

(1)) (propagate)
v

(harVest)

21

Tangents

Simple Example

STCE

Tangent assignments augment primal ...

t:L011+LOULl

t:=xp 21

t = cos(t) - t

t := sin(t)
t:=¢t

t=t-1

Yo =1do-t+xo-t
Yo :==To -t

:l)1 = f,/.%‘l —tmi‘l/l’%
Y1 I:t/xl

@©Uwe Naumann, 2017

40> «Fr «=)r» « =)

A

22

Tangents
Case Study

STCE

Euler-Maruyama live

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

A

23

Vector Tangents TONTH

e STCE
Computer Scientist's View (Simplified)

A first-order vector tangent code F(1) : R™ x R™*! — R™ x R™*!,

y
<Y(1)> = F(l)(an(l))a

computes a Jacobian x matrix product alongside with the function value:

F(x)

y:
). VF(x) - XW

vy

harvesting of the whole Jaco-

_ bian by seeding input directions
XMl eR", i=0,...,n—1,

with the Cartesian baS|s vectors
in R™. Note concurrency!

@©Uwe Naumann, 2017 «0O>» «F)r <«

it
v
a
it
v
Uy

A 24

Vector Tangents
Case Study

STCE

Euler-Maruyama live ...

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

A

25

Adjoints STt

The Jacobian is a linear operator VF : R" — R™.
Its adjoint is defined as (VF)* : R™ — R" where

<(VE) - yay,x >pe=<yq), VF - x >pm |

and where < .,. >g» and < .,. >grm denote appropriate scalar products in R"
and R™, respectively.

Theorem
(VF)* = (VE)T.

<(VE) -y, x >pe=< Y(l)’V[F Yxn(]l) >Rm
[=x)] =y

Note invariant at each point in the program execution — validation.

©Uwe Naumann, 2017

«O0>» «Fr» «=)>» « >

A 26

Adjoints

Fa &=s;k(><7 Ty Ko

©Uwe Naumann, 2017

)

<Or T «

Q) .
X . |
< ey K c gt

jﬁ)

DA

27

Adjoints
Mathematician's View

STCE

A first-order adjoint model Fiy : R" x R™ — R™ x R",

y
- F b b
<X(1)> 1) (X y))

defines an adjoint directional derivative alongside with the function value:

y =F(x)
X(]) = VF(X)T . }’(1)

... definition of the whole Jaco-
bian row-wise through input di-
rections y 1y € R™ equal to the
Cartesian basis vectors in R™.

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

>

A 28

Adjoints

Notation

RWTH
STCE

dF\ "
Ix Y

the subscript on y denotes the first directional differentiation of F' performed in
adjoint mode in direction y ;) € R™.

Enumeration of derivatives and distinction of super- and subscripts will become
relevant in the discussion of higher derivatives computed by combinations of
tangent and adjoint modes.

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

>

A

29

Adjoints
! STCE
Computer Scientist's View

Fay:R"x R™ x R™ x R" - R™ x R" x R"™ x R™,
~ ~ T ~ ~
(Z Zy ¥ xXu 2z Y(1)) = Fy(x,x1), X, 2,2(1), 2, ¥(1)):

computes a shifted transposed Jacobian X vector product alongside with the function
value:

R™ xR™ >

“ird NN

(@©Uwe Naumann, 2017 «0O0>» «Fr « =

v
a

it
v

Uy

A 30

Adjoints

Computer Scientist's View

STCE

The whole (dense) Jacobian can be harvested from the active input adjoints
(X(l)) cR™
Z()
row-wise by seeding active output adjoints
(Za)) cR™
Y()

with the Cartesian basis vectors in R™ and for x(1) := 0 on input.

@©Uwe Naumann, 2017

«0O>» «F)r «=>»

<

A

31

Adjoints

Computer Scientist's View (Simplified)

STCE

A first-order adjoint code F{;) : R" x R" x R™ — R™ x R",

y
:: F 9 b b
<x(1)) 1) (X, X1y, ¥(1))

computes a shifted transposed Jacobian x vector product alongside with the
function value:

y = F(x)
X(1) = X(1) + VF(X)T Y1)

... harvesting of the whole Jacobian row-wise by seeding input directions
y(1) € R™ with the Cartesian basis vectors in R™ and for x(1) = 0 on input.

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

A

32

Adjoints

Conceptually |

RWTH
STCE
1. Augmented Primal (enable data flow reversal)
Fori=0,...,n—1
V; =Xy
record i € V (’Ui(l) = :L'iu))
Fori=mn,...,q—1

v; = ;i (Vk) k=i

record i € V (vim = 0)

de; i
For j <i:record (i,5) € E (dj,; = ©i(Vr) k<
Fori=0,....m—1

d’Uj)

Yi = Un+4p+i

@©Uwe Naumann, 2017

«O» «F»

33

Conceptually |1

RWTH
2. Adjoint

FOFZ':O,,."m_l
’l)n+p+i(1) = yi(l)
Fori=q—1,...,n
V(ji) € E: Vjiyy "= Vjy + 0igy, - dij
Fori=0,...,n—1
xz(l) = vi(l)

@©Uwe Naumann, 2017

g g

i
v
a
it
v

QR

34

Adjoints STC“E““

Simple Example

Mind overwrites and context ...

t:=xp- 21
push(t); t := sin(t)
t:=e¢l

Yo :=To -1

Y1 =t/

.i‘1+: —t/.T% . 171

f“i’: 1/7,‘1 . 271

g =0

t+= g - Yo
Zo+=1-Yo

Yo:=0_

t:i=t-t

pop(t); t := cos(vy) - ¢
T1+=xg -
Tot+= 21 -

| k|

@©Uwe Naumann, 2017 «0O>» «F)r <«

it
v
a
it
v
Uy

A

Adjoints
Case Study

STCE

Euler-Maruyama live

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

A

36

Progress

RWTH
STCE

Second-(and Higher-)Order (A)AD

@©Uwe Naumann, 2017

«40)>» «F» « =)»

«E >

PAN &4

37

Second Derivatives

Multivariate Scalar Functions

STCE

Initially we consider multivariate scalar functions

y=F(x): Drp CR" = Ir C R in order to simplify the notation.

We assume F' to be twice continuously differentiable over its domain Dp
implying the existence of the Hessian

V2F(x) = %(x)

For multivariate vector functions the Hessian is a three-tensor complicating the
notation slightly due to the need for tensor arithmetic; see later.

@©Uwe Naumann, 2017

«0O)>» «F»

it
a
it
v

A

38

Numerical Approximation of Second Derivatives
Multivariate Scalar Functions

STCE
A second-order central finite difference quotient
d’F
dTLdTJ (X) -

F(x"+(ej +ei) - h) = F(x’ + (ej —e;) - h)

(1)

~F(x"+(e;—ej)-h)+ F(x"—(ej +e;)-h)| /(4-h?)
yields an approximation of the second directional derivative

as

d*F

yh2) = x0T V2iF(x) -x? (wlo.g m=1)

) ~ %(x0+ej~h)—j—£(x0—ej~h)
|F(x"+ej-h+e-h)—F(x"+e;-h—e;-h)
B 2-h
7F(x07ejoh+ei~h)fF(x07ej'h7eioh)
2-h
©Uwe Naumann, 2017

/(2-h).
«0O)>» «F)r « =)

<

>

A

39

Tangents of Tangents

Computer Scientist's View (Simplified)

STCE
A second derivative code F(1:2)

RPXxR"xR"xR" > RxRxRxR,
generated in Tangent-over-Tangent (ToT) mode computes

Yy
(2)
Yy
ot = PO (5 x®) (1) (1.2,
y(1:2)
as follows:
y F(x) ,
y(2) _ (x) - x(l)
y(l) VF(x) - x(1)
y(12) xWT . V2P (x) - x® 4 VF(x) - x(12)

@©Uwe Naumann, 2017

«40)>» «F» « =)»

<

>

A

40

Tangents of Tangents

Accumulation of Hessian

(]

STCE

xO" . V2 R(x) - x®@

x(12) = 0; harvesting from y(

accumulation of the whole Hessian element-wise by seeding input directions

x(M e R™ x(® € R"™ independently with the Cartesian basis vectors in R"™ for
1,2)

Note: Approximate Tangents of Tangents

@©Uwe Naumann, 2017

«0O>» «Fr «E)>» «

>

A

41

Tangents of Adjoints

Computer Scientist's View (Simplified)
A second derivative code

STCE
@)
Foy

R'"XR"XR"XxR"xRxR—-RxRxR"xR",
generated in Tangent-over-Adjoint (ToA) mode computes

)
y?

(2 (2) (2)
M = Fuy 06 X%, X1, 41) Uy)
(2
X
as follows:
, F(x)
y® | VF(x)-x®
1 x() + VE()" - yq)
2
X(1) X0y Yy - VPF(x) - x® + V)T -y
®©Uwe Naumann, 2017 O g =y Er E 9DAC

42

Tangents of Adjoints

Accumulation of Hessian

STCE
.

Yya) - VZF(X) -x®
. accumulation of the whole Hessian column-wise by seedlng input directions
x(2) € R"™ with the Cartesian basis vectors in R"™ for X(1) =0,yq) =1 and
yéfg = 0; harvesting from xglg.

Note: Approximate Tangents of Adjoints

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

A

43

Progress

STCE

“Getting Serious” with AAD

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

PAN &4

44

dco/c++

RWTH
S L STCE
derivative code by overloading in C++
dco/c++ features
>

tangents and adjoints of arbitrary order through recursive template
instantiation for numerical simulation code implemented in C++
front-ends for Fortran, C#, Matlab, Python (3x alpha)

optimized assignment-level gradient code through expression templates
cache-optimized internal representation in various incarnations
vector modes / detection and exploitation of sparsity

external adjoint / Jacobian interfaces
user-defined intrinsics

vV V. vV vV vV VY

intrinsic NAG Library functions (e.g. Linear Algebra, Interpolation, Root
Finding, Nearest Correlation Matrix)

| 4
GPU coupling, meta adjoint programming (map)

@©Uwe Naumann, 2017

support for parallelism: thread-safe data structures, adjoint MPI library,

A

45

Tangents by Overloading
Tangent IDAG

STCE

5: yo(*)

Tangent IDAG

We consider

(1) = (“gnteos /)

implemented as

t :=sin(xg * x1)/x1

Yo =X *l; Y1 :=1t*xc

yielding SAC

Vg ‘= X * 1

v3 1= sin(vg)

vy = w3/

Yo ‘= To * Vg, Y1 = Vg kC

for some passive value ¢, i.e, no deriva-

tives of or with respect to required; x,y,
and t are active.

@©Uwe Naumann, 2017

«0O)>» «F»

a
it
a
it
v
it

A

46

Tangents by Overloading
Seed

L5 yaln)

: 6: y1(xc)
- Jwo] GRS

RWTH
STCE

4:/

[1/51.].5,‘“» xg ="
[v4] . 3:sin .
R e (1)
[cos(vz)]A a’,‘o =7
e (1)
. 8) ?
20 % :
©Uwe Naumann, 2017 «O» «F»r « = > E DA

47

Tangents by Overloading

RWTH
o o STCE
Propagate (Local Directional Derivatives)
D5) C6)
S N
S
[1/1'.1.]}‘ ‘. \
[v4]‘ 3: sin

’U%l:): To *T1

= % x(()l) + g * x&l)

@©Uwe Naumann, 2017

«0>» «Fr «E»r» «

it
v

A

Tangents by Overloading
Propagate

STCE

L5yl

6 pi(ee) ¢
».'v,[lz_o] [f_’] v 3

Vg 1= T * X1
IO I M
5 = X1 kX + X x X
v3 1= sin(vg)

vél = cos(vg) * vél)

@©Uwe Naumann, 2017

«O>» «F»r «

it

v

a
it

A

49

Tangents by Overloading
Propagate

L5 ()

v o]

6 pi(ee) ¢
[{’1 v

STCE

@©Uwe Naumann, 2017

«O>» «F»r «

it
v

’U%l;: To * T1

Vg ' 1= X1 % xél) + 20 * xil)
v3 1= sin(vg)
vél) = cos(vg) * vél)

vy 1= v3/1

vfll) = (vé” — Uy * Jjgl))/m

A

50

Tangents by Overloading
Propagate

STCE

U% =T * X1
1121) =@y ok xél) + X * zg)
v3 = sin(vq)
(vl vgl) = cos(va) * vél)
vy 1= w3/
[w$M] vil) : (vél) — U4 * xgl))/m

Yo = To * Vg
(0
Yo

0: xo

=y % :c(()l) + xg * fufll)

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
it
v

A

51

Tangents by Overloading
Propagate

@©Uwe Naumann, 2017

«O>» «F»r «

STCE
Vg 1= Xg * X1
Uzl) =Xy ok xél) + X0 * l‘gl)
vz 1= sin(vg)
vél) = cos(vg) * vél)
vy =3/

vil) = (vgl) — Uy * xil))/xl
Yo = To * Vs

y(()l) = vy K a:él) + xo * vil)
Y1 ‘= Uy xC
y%l) =c* vil)

A

52

Tangents by Overloading STCE
Harvest

=20 *xT
%) =1 *x()+x *zgl)
’1)3 = sin(vg)
vgl) = cos(v2) * vé)
Vg = v3/T1
vil) = (vgl) — vy * :cl)/xl
Yo = To * Vg

y(()l) =4 *IL() —+ xq *vil)
Y1 ‘= vgxcC
y?) = c*vfll)

(@©Uwe Naumann, 2017 «O)>» «F»r <«

it
v
a
it
v
Uy

A

] RWTH
Tangents with dco/c++ STCE

Driver

User Guide: y1) := VF(x) - x(!)

1| void driver(const vector<double>& xv, double &yv, vector<double> &g) {
2| typedef dco::gtls<double>::type DCO_T;

3| size_t n=xv.size();

4| DCO_T y=0;

5| for (size_t i=0;i<n;i++) {

6 vector<DCO_T> x(n,0);

7 for (size_t j=0;j<n;j++) x[jl=xv[j];

8 dco::derivative(x[i])=1; // seed directions

9 f(x,y); // overloaded primal
10 gli]=dco::derivative(y); // harvest directional derivatives
11
12| yv=dco:value(y); // extract function value
13| }

©Uwe Naumann, 2017 «O0» «Fr» «E>» «E>» E 9HDHae 54

Ad._]'OIntS by Overloading ST
Adjoint IDAG (Tape)

We consider

Yo\ _ (o *sin(zg*z1)/x1
y1) \sin(zg*x1)/x1 % C
implemented as

t :=sin(xg * x1)/x1

Yo = Tg * t
ypi=tx*xc
yielding SAC

Vg ‘= X * X1
vg 1= sin(vg)
vy 1= v3/T1
Yo = T * Vg
Y1 :=va*cC

Adjoint IDAG for some passive value c.

@©Uwe Naumann, 2017 <O <Fr o«

it
a
it
v
Uy

A

Adjoints by Overloading

Register (Independent Inputs with Tape)

RWTH
STCE

5: yo(x) 6: y1(xc)

) -Vv[;’r(r] _['_’],.v'-‘_ :

3 4/

e

[oa]

3:sin

To ‘=

i~ zy =7
ok '[-.7{’4/“]

@©Uwe Naumann, 2017

«0O)» «F»

it
v
a
it
v

A

56

Adjoints by Overloading
Record (Tape)

STCE
5: yo(x)

vl

6: y1(xc)
v :

[oa]

Vg ‘= X *T1
feos(ua)) X

@©Uwe Naumann, 2017

«0O)» «F»

it
v
a
it
v

A

57

Adjoints by Overloading
Record (Tape)

STCE
5: yo(x)

vl

6: y1(xc)
v :

[oa]

Vg ‘= X *T1

v3 = sin(vg)

@©Uwe Naumann, 2017

«0O)» «F»

it
v
a
it
v

A

58

Adjoints by Overloading
Record (Tape)

STCE
5: yo(x)

vl

6: y1(xc)
v :

Vg ‘= X * 1
: v3 1= sin(vg)
(o]
feos(us)]

Vyq ‘= ’Ug/.’ﬂl

@©Uwe Naumann, 2017

«0O)» «F»

it
v
a
it
v

A

59

Adjoints by Overloading
Record (Tape)

STCE

6: y1(xc)
o

Vg ‘= X %1
vg 1= sin(vg)
Vg4 1= ’U3/$1

Yo = T * Vg

(@©Uwe Naumann, 2017 «O>» «F»r <«

it
v
a
it
v
Uy

A

60

Adjoints by Overloading STCRE"“
Record (Tape)

Vg ‘= X * X1
v3 1= sin(vg)
Vg ‘= U3/fl)1
Yo = To * Vg
Y1 = Vg xC

(@©Uwe Naumann, 2017 «O>» «F»r <«

it
v
a
it
v
Uy

A

Adjoints by Overloading

Seed

STCE

[cos(v2)]

Vg =
V3 ‘=
Vg ‘=
Yo =
Y1 =
Yoy -
Yig) -
IEO(I) =
1'1(1) =
U2(1> :
1)3(1) :
Vaqy =

@©Uwe Naumann, 2017

«O>» «F»r «

Adjoints by Overloading STC'ME L
Interpret (Tape)

Vg ‘= X * X1

v3 1= sin(vg)

vy = v3/1

Yo = T * Vg

Y1 = Vg xC

Vi)t = CH Y1,

Note C++ Syntax:

V4T = C* Y1y,
=
V4 *= Vdg, —+ c* Y1y

(@©Uwe Naumann, 2017 «O)>» «F»r <«

it
v
a
it
v
Uy

DA 63

Adjoints by Overloading
Interpret (Tape)

STCE

Vg ‘= X * X1

v3 1= sin(vg)

vy = w3/

Yo ‘= T * Vg

Y1 = Vg xC
Vgt =C* U,
V4T = T0 * Yo,
Lo, = V4 * Yo,

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
a
it
v
Uy

A

64

Adjoints by Overloading
Interpret (Tape)

STCE

[&'m Lo,)

Vg i= 2T * T1

v3 1= sin(vg)

vy 1= v/

Yo = T * Vg

Y1 = Uy xC
V)t =C* Y1,
V4t = To * Yoy,
oy, T = V4 * Yo,

u=1/1
U3(p) T = UK Vagy
LL‘l(l) — = Ug xU* ’U4(1)

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
a
it
v
Uy

A

65

Adjoints by Overloading

Interpret (Tape)

STCE

[Oyooy,]

[Ouizr1)]

Vg2 ‘= 2T * 1

v3 1= sin(vg)

vy 1= v3/T1

Yo = T * Vg

Y1 = Vg Xk C
Vit = C* Y,
V4t = To * Yoy,
oy, T = V4 * Yo,

wi=1/x,
’U3(1)+ = U ¥ Vg,
931(1)— = Vg *UX* "U4(1)

V2, + = cos(z2) * V3,

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
a
it
v
Uy

A

66

Adjoints by Overloading

Interpret (Tape)

STCE

[Oyooy,]

[Ouizr1)]

Vg ‘= X *T1

v3 = sin(vg)

vy =3/

Yo = T * Vg

Y1 = Vg *xC
Vit =C* Y1,
U4y T = To * Yo,
Zonyt = V4 * Yoy,

wi=1/zy

U3y T = UK Vagy,
2111(1)— = Vg *U* ’U4(1)
Vo, + = cos(z2) * V3,
Loy T = L1 % U,

xl(l)—l— = To * U2,

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
a
it
v
Uy

A

67

Adjoints by Overloading

Harvest

STCE

Vg ‘= X * 1

v3 1= sin(vg)

vy 1= w3/

Yo = T * Vg

Y1 = Vg xC
Vay+ = Cx Y,
V4, T = T0 * Yo,
Loyt = V4 * Yoy,

ui=1/z
U3y T = Uk Vagy,
1'1(1) — = Ug *xU* ’1}4(1)

Vot = cos(za) * U3,
Jﬁgm—l- = X1 ¥ U2
x1<1)+ = T * V2,

@©Uwe Naumann, 2017

«O>» «F»r «

it
v
a
it
v
Uy

A

68

Adjoints with dco/c++ RWTH

STCE

Driver

User Guide: X(1> = VF(X)T . Y(l)

1| void driver(const vector<double> &xv, double &yv, vector<double> &g) {
2| typedef dco::gals<double> DCO_M; // dco mode

3| typedef DCO_M::type DCO_T; // dco type

4| typedef DCO_M::tape_t DCO_TAPE_T; /dco tape type

5| size_t n=xv.size();

6| vector<DCO_T> x(n); DCO_T y;

7| DCO_M::global_tape=DCO_TAPE_T::create(); // tape creation

8| for (size_t i=0;i<n;i++) { // independent tape entries

9 x[i]=xv[i]; DCO_M::global_tape—>register_variable(x[i]);

10

11| f(x,y); // overloaded primal

12| DCO_M::global_tape—>register_output_variable(y); // dependent tape entry
13| yv=dco::value(y); dco::derivative(y)=1; // seed

14| DCO_M::global_tape—>interpret_adjoint(); // tape interpretation

15| for (size_t i=0;i<n;i++) { g[i]=dco::derivative(x[i]); } // harvest
16| DCO_TAPE_T::remove(DCO_M::global_tape); // release tape
17| }

©Uwe Naumann, 2017 «O> «Fr «E>r «EH>» E HAQ 69

Data Flow Reversal

DAG / CaLL TREE REVERSAL

STCE

» U.N.: DAG REVERSAL is NP-Complete,
J. Disc. Alg. 7(4), 402-410 (2009).

» U.N.: CALL TREE REVERSAL is

NP-Complete, LNCSE 64, 13-22 (2008).

» J. Lotz et al.: Mixed Integer Programming
for Call Tree Reversal, SIAM CSC (2016).

@©Uwe Naumann, 2017

«O>» «F»r «

A

70

CALL TREE REVERSAL
Example: Let MEM = 1110 ...

STCE

+10|+10 -10|-10

+10| +10

-10|-10
+100| +100

R=(1,1): *
—100{ -10C

100 | 100

+1000
MEM=1220, OPS=0

+100| +100

—100| -100
—1000

1000
MEM=1110, OPS=2200

+1000

@©Uwe Naumann, 2017

«0O)>» «F»

it
v
a
it
v

A

71

CALL TREE REVERSAL
o STCE
Example: Let MEM = 1110 ... Greedy Heuristics

+10|+10 -10|-10

Smallest Memory Increase starts R=(0,1):
from R — 1 and yleldS . +100| +100 —~100{ =100

Largest Memory Decrease (LMD)

starts from R = 0 and yields ... H 71

1000 +1000 ~1000
MEM=1110, OPS=1000

Largest Memory Increase (LMI) re-
mains at R =1 as R = (1, 0) infea-
sible

1000 +1000 ~1000
MEM=1120, OPS=1200

(@©Uwe Naumann, 2017 «0O0>» «Fr « =

v
a
it
v

Uy

A

72

(Embedded) Symbolic Adjoints Sreem
Story

Algorithmic Differentiation (AD) is based on Symbolic Differentiation (SD).
AD approaches vary in terms of choice of SD level.

v

U.N. et al.: Algorithmic differentiation of numerical methods: Tangent and
adjoint solvers for parameterized systems of linear equations, RWTH
Technical Report AIB-2012-10 (2012).

» U.N. et al.: Algorithmic differentiation of numerical methods: Tangent and
adjoint solvers for parameterized systems of nonlinear equations, ACM
TOMS 41 (4), 26 (2015).

» N. Safiran et al.: Algorithmic Differentiation of Numerical Methods:
Second-Order Adjoint Solvers for Parameterized Systems of Nonlinear
Equations, Procedia Computer Science 80, 2231-2235 (2016).

> J. Lotz et al.: A Case Study in Adjoint Sensitivity Analysis of Parameter
Calibration, Procedia Computer Science 80, 201-211 (2016).

(@©Uwe Naumann, 2017 «0O0>» «F>r» «E» «E>»

A 73

(Embedded) Symbolic Adjoints
Case Study: Root Finding

STCE

T(1) " 45
22 —p=0

20, p) record

@©Uwe Naumann, 2017

perturb

N 2.z
differentiate @ (*

interpret

_ T
P Py = 2./
P(ﬂ) = S<G7$(l))

S
I

«0O)>» «F»

a
it

74

(Embedded) Symbolic Adjoints

Case Study: Optimization

STCE

differentiate
first-order

=(p)

argmin 2% —p-x+gq

optimality
condition

Ty~

.
(#,G) = 5(a°,p) | record

pertu

dp

dx
r rx(l)-(Q-x-——l

rb

v
interpret 20 - .
" A N/ - > Py = v NpZ‘l) ~p* (1) h’”
Pl = S(G,xa))
®©Uwe Naumann, 2017 <O» «Fr «E» «E =

A

75

Adjoint Code Design Patterns ch',%’
Case Study: Ensemble of Evolutions

Visual Paradigm Standard Editon(RWTH-Aachen

L

=
1T typenamel

e Naumann, 2017

	Introduction
	First-Order(A)AD
	Prerequisites
	Tangents
	Adjoints

	Second-(and Higher-)Order (A)AD
	Tangents of Tangents
	Tangents of Adjoints

	``Getting Serious'' with AAD
	Implementation by Overloading
	Checkpointing
	Symbolic Adjoints
	Adjoint Code Design Patterns

