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STCE
The Art of Differentiating Computer Programs
Bumping?

...
For differentiation, is there anything else?

Perturbing the inputs – can’t imagine this fails.
I pick a small Epsilon, and I wonder ...

...

from: “Optimality” (Lyrics: Naumann; Music: Think of Fool’s

Garden’s “Lemon Tree”) in Naumann: The Art of Differentiating

Computer Programs. An Introduction to Algorithmic Differenti-

ation. Number 24 in Software , Environments, and Tools, SIAM,

2012. Page xvii

,
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STCE
The Art of Differentiating Computer Programs
Story

I inspired by sensitivity analysis, uncertainty quantification, calibration /
optimization

I finite differences (first- and second-order), symbolic, algorithmic

I implementation by overloading, source trafo, hand-coding

I real code

I sensitivity analysis as modelling and software engineering tool

I what matters
I user expertise
I tool quality
I tool sustainability and support

,
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STCE
The Art of Differentiating Computer Programs
Summary of Results

Let y = F (x), F : IRn → IR :

1. tangent AD: y(1) = ∇F · x(1) ⇒ ∇F at O(n) · Cost(F )

2. adjoint AD: x(1) = ∇FT · y(1) ⇒ ∇F at O(1) · Cost(F )

3. 2nd-order tangent AD: y(1,2) = x(1)T · ∇2F · x(2) ⇒ ∇2F at
O(n2) · Cost(F )

4. 2nd-order adjoint AD: x
(2)
(1) = y(1) · ∇F 2 · x(2) ⇒ ∇2F at O(n) · Cost(F )

and ∇2F · x(2) at O(1) · Cost(F )

,
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STCE
Aims of this Course

You will learn how to

I implement tangent and adjoint versions of a Monte Carlo /
Euler-Maruyama solver for parameterized scalar SDEs

I ensure feasibility of adjoint Monte Carlo simulation through pathwise
adjoints

I “get serious” with AAD (tools, checkpointing, symbolic adjoints, design
patterns, ...)

,
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STCE
Case Study
Euler-Maruyama

We are looking for the expected value E(x) of the solution x(p, T ), T > 0 of
the scalar stochastic initial value problem

dx = f(x(p, t),p, t))dt+ g(x(p, t),p, t)dW

with Brownian Motion dW and for x(p, 0) = x0.

Forward finite differences in time with time step 0 < δt� 1 yield the explicit
Euler-Maruyama evolution

xi+1 := xi + δt · f(xi,p, i · δt) +
√
δt · g(xi,p, i · δt) · dW i

for i = 0, . . . , n− 1, target time T = n · δt, parameter vector p ∈ IRl, and with
random numbers dW i drawn from the standard normal distribution N(0, 1).

The solution E(x) is approximated using Monte Carlo simulation over (a
sufficiently large number of) Euler-Maruyama paths.

We are interested in sensitivities of the final state E(x) wrt. p.

,
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STCE
Motivation
Race (Euler-Maruyama m = 104, n = 102, l = 102)

I primal: primal.cpp (inspect)

I bumping: fd.cpp (inspect)

I tangent: tangent.cpp (live)

I vector tangent: tangent_vector.cpp (inspect)

I adjoint: adjoint.cpp (live)

I pathwise adjoint: adjoint_pathwise.cpp (inspect)

mode run time (s) memory size (b) accuracy
bump 10.9 ∼ O(l) ∼ P -
tangent 21.5 ∼ O(2 · l) ∼ 2 · P +
vector tangent 13.6 ∼ O(2 · l) ∼ P + P · l +
adjoint 0.3 ∼ O(1) ∼ 2 · P + 2 ·m · n · 8 +
pathwise adjoint 0.5 ∼ O(1) ∼ 2 · P + 2 · (m+ n) · 8 +

where P denotes the memory requirement of the primal code.

,
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STCE
Motivation
Adjoint Nice To Have?

MITgcm, (EAPS, MIT)

in collaboration with ANL, MIT,
Rice, UColorado

J. Utke, U.N. et al: OpenAD/F: A

modular, open-source tool for automatic

differentiation of Fortran codes . ACM

TOMS 34(4), 2008.

Plot: A tangent computation / finite difference approximation for 64,800 grid
points at 1 min each would keep us waiting for a month and a half ... :-((( We
can do it in less than 10 minutes thanks to adjoints computed by a
differentiated version of the MITgcm :-)

,
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STCE
Fundamental Mathematics

I continuity

I differentiability?

I gradient, Jacobian, Hessian, higher-order derivative tensors

I Taylor expansion

I chain rule

,
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STCE
First-Order (A)AD
Prerequisites: Feasible Target Code I

1. The given implementation of F : IRn → IRm : y = F (x), can be
decomposed into a single assignment code (SAC)

vi = ϕi(xi) = xi i = 0, . . . , n− 1

vj = ϕj

(
(vk)k≺j

)
j = n, . . . , n+ q − 1

yk = ϕn+q+k(vn+p+k) = vn+p+k k = 0, . . . ,m− 1

where q = p+m and k ≺ j denotes a direct dependence of vj on vk as an
argument of ϕj .

2. All elemental functions ϕj possess continuous partial derivatives

dj,i ≡
dϕj

dvi
(vk)k≺j

with respect to their arguments (vk)k≺j at all points of interest.

,
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STCE
First-Order (A)AD
Prerequisites: Feasible Target Code II

3. A linearized SAC (lSAC) is obtained by augmenting the elemental
assignments with computations of the local partial derivatives dj,i.

4. The SAC induces a directed acyclic graph (DAG) G = G(F ) = (V,E)
with integer vertices V = {0, . . . , n+ q} and edges
V × V ⊇ E = {(i, j) : i ≺ j}.

5. The set of vertices representing the n inputs is denoted as X ⊆ V. The m
outputs are collected in Y ⊆ V. All remaining intermediate vertices belong
to Z ( V.

6. A linearized DAG (lDAG) is obtained by attaching the dj,i to the
corresponding edges (i, j) in the DAG.

,
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STCE
First-Order (A)AD
Prerequisites: Chain Rule on lDAG

SAC:
z := H(x)
y := G(z,x)

DAG:

1: x

2: z[H]

3: y[G]

lDAG:

1: x

2: z[H]

3: y[G]

∂G
∂x

dH
dx

dG
dz

∇F (x) ≡ dy

dx
=

∑
path∈lDAG

∏
(i,j)∈path

dj,i

,
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STCE
First-Order (A)AD
Combinatorics of Chain Rule

I U. N.: Optimal Jacobian accumulation is NP-complete. Math. Prog.
112(2):427–441, Springer, 2008.

Proof by reduction from Ensemble Computation

I U. N.: Optimal accumulation of Jacobian matrices by elimination methods
on the dual computational graph. Math. Prog. 99(3):399–421, Springer,
2004.

Example: bat graph in STCE logo

I A. Griewank and U. N.: Accumulating Jacobians as chained sparse matrix
products. Math. Prog. 95(3):555–571, Springer, 2003.

Example: IR4 → IR2 → IR2 → IR2 → IR4

,
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STCE
Tangents
Mathematician’s View

A first-order tangent model F (1) : IRn × IRn → IRm × IRm,(
y

y(1)

)
= F (1)(x,x(1)),

defines a directional derivative alongside with the function value:

y = F (x)

y(1) = ∇F (x) · x(1)

=
... definition of the whole Ja-
cobian column-wise by input di-
rections x(1) ∈ IRn equal to the
Cartesian basis vectors in IRn.

,
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STCE
Tangents
Computer Scientist’s View

A first-order tangent code F (1) : IRn × IRn × IRñ → IRm × IRm × IRm̃

z
z(1)

z̃
y

y(1)

ỹ


:= F (1)(x,x(1), x̃, z, z(1), z̃),

computes a Jacobian × vector product alongside with the function value:

IRm × IRm̃ 3


z
z̃
y
ỹ

 := F (x, x̃, z, z̃)

IRm 3

(
z(1)

y(1)

)
:= ∇F (x, x̃, z, z̃) ·

(
x(1)

z(1)

)
,
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STCE
Tangents
Computer Scientist’s View

Variables for which derivatives are computed are referred to as active; x and z
are active inputs; z and y are active outputs.

Variables which depend on active inputs are referred to as varied.

Variables for which no derivatives are computed are referred to as passive; x̃
and z̃ are passive inputs; z̃ and ỹ are passive outputs.

Variables on which active outputs depend are referred to as useful.

Active variables are both varied and useful.

The whole (dense) Jacobian can be harvested column-wise from the active
output directions (z(1),y(1))T ∈ IRm by seeding active input directions
(x(1), z(1))T ∈ IRn with the Cartesian basis vectors in IRn.

,
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STCE
Tangents
Computer Scientist’s View (Simplified)

A first-order tangent code F (1) : IRn × IRn → IRm × IRm,(
y

y(1)

)
:= F (1)(x,x(1)),

computes a Jacobian × vector product alongside with the function value:

y := F (x)

y(1) := ∇F (x) · x(1)

,
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STCE
Tangents
Conceptually

For i = 0, . . . , n− 1 (
vi

v
(1)
i

)
:=

(
xi

x
(1)
i

)
(seed)

For i = n, . . . , q − 1(
vi

v
(1)
i

)
:=

(
ϕi(vk)k≺i∑

j≺i
dϕi(vk)k≺i

dvj
· v(1)j

)
(propagate)

For i = 0, . . . ,m− 1 (
yi

y
(1)
i

)
:=

(
vn+p+i

v
(1)
n+p+i

)
(harvest)

,
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STCE
Tangents
Simple Example

Tangent assignments augment primal ...

0: x0 1: x1

2: ∗

3: sin

4: exp

5: y0(∗) 6: y1(/)

x1 x0

cos(v2)

v4

x0

v4

1/x1

−v4/x2
1

ṫ = ẋ0 · x1 + x0 · ẋ1
t := x0 · x1
ṫ = cos(t) · ṫ
t := sin(t)
t := et

ṫ = t · ṫ
ẏ0 = ẋ0 · t+ x0 · ṫ
y0 := x0 · t
ẏ1 = ṫ/x1 − t · ẋ1/x21
y1 := t/x1

0: ẋ0 1: ẋ1

2: ṫ

3: ṫ

4: ṫ

5: ẏ0 6: ẏ1

x1 x0

cos(t)

t

x0

t

1/x1

−t/x2
1

,
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STCE
Tangents
Case Study

Euler-Maruyama live ...

,
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STCE
Vector Tangents
Computer Scientist’s View (Simplified)

A first-order vector tangent code F (1) : IRn × IRn×l → IRm × IRm×l,(
y
Y (1)

)
:= F (1)(x, X(1)),

computes a Jacobian × matrix product alongside with the function value:

y := F (x)

Y (1) := ∇F (x) ·X(1)

=

... harvesting of the whole Jaco-
bian by seeding input directions
X(1)[i] ∈ IRn, i = 0, . . . , n − 1,
with the Cartesian basis vectors
in IRn. Note concurrency!

,
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STCE
Vector Tangents
Case Study

Euler-Maruyama live ...

,
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STCE
Adjoints

The Jacobian is a linear operator ∇F : IRn → IRm.

Its adjoint is defined as (∇F )∗ : IRm → IRn where

< (∇F )∗ · y(1),x
(1) >IRn=< y(1),∇F · x(1) >IRm ,

and where < ., . >IRn and < ., . >IRm denote appropriate scalar products in IRn

and IRm, respectively.

Theorem

(∇F )∗ = (∇F )T .

< (∇F )T · y(1)
[=:x(1)]

,x(1) >IRn=< y(1),∇F · x(1)

[=:y(1)]
>IRm

Note invariant at each point in the program execution → validation.

,
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STCE
Adjoints

,
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STCE
Adjoints
Mathematician’s View

A first-order adjoint model F(1) : IRn × IRm → IRm × IRn,(
y

x(1)

)
= F(1)(x,y(1)),

defines an adjoint directional derivative alongside with the function value:

y = F (x)

x(1) = ∇F (x)T · y(1)

=

... definition of the whole Jaco-
bian row-wise through input di-
rections y(1) ∈ IRm equal to the
Cartesian basis vectors in IRm.

,
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STCE
Adjoints
Notation

In (
dF

dx

)T

· y(1)

the subscript on y denotes the first directional differentiation of F performed in
adjoint mode in direction y(1) ∈ IRm.

Enumeration of derivatives and distinction of super- and subscripts will become
relevant in the discussion of higher derivatives computed by combinations of
tangent and adjoint modes.

,
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STCE
Adjoints
Computer Scientist’s View

F(1) : IR
n × IRnx × IRm × IRñ → IRm × IRn × IRmy × IRm̃,(
z z̃ y ỹ x(1) z(1) y(1)

)T
:= F(1)(x,x(1), x̃, z, z(1), z̃,y(1)),

computes a shifted transposed Jacobian × vector product alongside with the function
value:

IRm × IRm 3


z
z̃
y
ỹ

 := F (x, x̃, z, z̃)

(
x(1)

z(1)

)
:=

(
x(1)

0

)
+∇F (x, x̃, z, z̃)T ·

(
z(1)
y(1)

)
y(1) := 0

,
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STCE
Adjoints
Computer Scientist’s View

The whole (dense) Jacobian can be harvested from the active input adjoints(
x(1)

z(1)

)
∈ IRm

row-wise by seeding active output adjoints(
z(1)
y(1)

)
∈ IRm

with the Cartesian basis vectors in IRm and for x(1) := 0 on input.

,
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STCE
Adjoints
Computer Scientist’s View (Simplified)

A first-order adjoint code F(1) : IRn × IRn × IRm → IRm × IRn,(
y

x(1)

)
:= F(1)(x,x(1),y(1)),

computes a shifted transposed Jacobian × vector product alongside with the
function value:

y := F (x)

x(1) := x(1) +∇F (x)T · y(1)

... harvesting of the whole Jacobian row-wise by seeding input directions
y(1) ∈ IRm with the Cartesian basis vectors in IRm and for x(1) = 0 on input.

,

c©Uwe Naumann, 2017 32



STCE
Adjoints
Conceptually I

1. Augmented Primal (enable data flow reversal)

For i = 0, . . . , n− 1

vi := xi

record i ∈ V (vi(1) := xi(1))

For i = n, . . . , q − 1

vi := ϕi(vk)k≺i

record i ∈ V (vi(1) := 0)

For j ≺ i : record (i, j) ∈ E (dj,i :=
dϕi(vk)k≺i

dvj
)

For i = 0, . . . ,m− 1
yi := vn+p+i

,
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STCE
Adjoints
Conceptually II

2. Adjoint

For i = 0, . . . ,m− 1

vn+p+i(1) := yi(1)

For i = q − 1, . . . , n

∀ (j, i) ∈ E : vj(1) := vj(1) + vi(1) · di,j

For i = 0, . . . , n− 1

xi(1) := vi(1)

,
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STCE
Adjoints
Simple Example

Mind overwrites and context ...

x0 x1

t(∗)

t(sin)

t(exp)

y0(∗) y1(/)

x1 x0

cos(t)

t

x0

t

1/x1

−t/x2
1

t := x0 · x1
push(t); t := sin(t)
t := et

y0 := x0 · t
y1 := t/x1

x̄1+= −t/x21 · ȳ1
t̄+= 1/x1 · ȳ1
ȳ1 := 0
t̄+= x0 · ȳ0
x̄0+= t · ȳ0
ȳ0 := 0
t̄ := t · t̄
pop(t); t̄ := cos(v2) · t̄
x̄1+= x0 · t̄
x̄0+= x1 · t̄

0: x̄0 1: x̄1

2: t̄

3: t̄

4: t̄

5: ȳ0 6: ȳ1

x1 x0

cos(t)

t

x0

t

1/x1

−t/x2
1

,
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STCE
Adjoints
Case Study

Euler-Maruyama live ...

,
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STCE
Second Derivatives
Multivariate Scalar Functions

Initially we consider multivariate scalar functions
y = F (x) : DF ⊆ IRn → IF ⊆ IR in order to simplify the notation.

We assume F to be twice continuously differentiable over its domain DF

implying the existence of the Hessian

∇2F (x) ≡ d2F

dx2
(x).

For multivariate vector functions the Hessian is a three-tensor complicating the
notation slightly due to the need for tensor arithmetic; see later.

,
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STCE
Numerical Approximation of Second Derivatives
Multivariate Scalar Functions

A second-order central finite difference quotient

d2F

dxidxj
(x0) ≈

[
F (x0 + (ej + ei) · h)− F (x0 + (ej − ei) · h)

−F (x0 + (ei − ej) · h) + F (x0 − (ej + ei) · h)
]
/(4 · h2)

(1)

yields an approximation of the second directional derivative

y(1,2) = x(1)T · ∇2F (x) · x(2) (w.l.o.g. m = 1)

as

d2F

dxidxj
(x0) ≈

dF
dxi

(x0 + ej · h)− dF
dxi

(x0 − ej · h)

2 · h

=

[
F (x0 + ej · h+ ei · h)− F (x0 + ej · h− ei · h)

2 · h

−F (x0 − ej · h+ ei · h)− F (x0 − ej · h− ei · h)

2 · h

]
/(2 · h).

,
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STCE
Tangents of Tangents
Computer Scientist’s View (Simplified)

A second derivative code F (1,2) : IRn × IRn × IRn × IRn → IR× IR× IR× IR,
generated in Tangent-over-Tangent (ToT) mode computes

y
y(2)

y(1)

y(1,2)

 = F (1,2)(x,x(2),x(1),x(1,2)),

as follows: 
y
y(2)

y(1)

y(1,2)

 :=


F (x)

∇F (x) · x(2)

∇F (x) · x(1)

x(1)T · ∇2F (x) · x(2) +∇F (x) · x(1,2)

 .

,
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STCE
Tangents of Tangents
Accumulation of Hessian

=

x(1)T · ∇2F (x) · x(2)

... accumulation of the whole Hessian element-wise by seeding input directions
x(1) ∈ IRn x(2) ∈ IRn independently with the Cartesian basis vectors in IRn for
x(1,2) = 0; harvesting from y(1,2).

Note: Approximate Tangents of Tangents

,
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STCE
Tangents of Adjoints
Computer Scientist’s View (Simplified)

A second derivative code

F
(2)
(1)

: IRn × IRn × IRn × IRn × IR× IR→ IR× IR× IRn × IRn,

generated in Tangent-over-Adjoint (ToA) mode computes
y
y(2)

x(1)

x
(2)
(1)

 = F
(2)
(1) (x,x(2),x(1),x

(2)
(1), y(1), y

(2)
(1)),

as follows:
y
y(2)

x(1)

x
(2)
(1)

 :=


F (x)

∇F (x) · x(2)

x(1) +∇F (x)T · y(1)
x
(2)
(1) + y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)(1)


,
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STCE
Tangents of Adjoints
Accumulation of Hessian

=

y(1) · ∇2F (x) · x(2)

... accumulation of the whole Hessian column-wise by seeding input directions

x(2) ∈ IRn with the Cartesian basis vectors in IRn for x
(2)
(1) = 0, y(1) = 1 and

y
(2)
(1) = 0; harvesting from x

(2)
(1).

Note: Approximate Tangents of Adjoints

,
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STCE
dco/c++
derivative code by overloading in C++

dco/c++ features

I tangents and adjoints of arbitrary order through recursive template
instantiation for numerical simulation code implemented in C++

I front-ends for Fortran, C#, Matlab, Python (3x alpha)

I optimized assignment-level gradient code through expression templates

I cache-optimized internal representation in various incarnations

I vector modes / detection and exploitation of sparsity

I external adjoint / Jacobian interfaces

I user-defined intrinsics

I intrinsic NAG Library functions (e.g. Linear Algebra, Interpolation, Root
Finding, Nearest Correlation Matrix)

I support for parallelism: thread-safe data structures, adjoint MPI library,
GPU coupling, meta adjoint programming (map)

,
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STCE
Tangents by Overloading
Tangent lDAG

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ] [x

(1)
1 ]

0 [x1] 1 [x0]

2 [cos(v2)]

3 [1/x1]

5 [x0]

4 [v4]

6 [c]

7 [−v4/x1]

Tangent lDAG

We consider(
y0
y1

)
=

(
x0 ∗ sin(x0 ∗ x1)/x1
sin(x0 ∗ x1)/x1 ∗ c

)
implemented as

t := sin(x0 ∗ x1)/x1
y0 := x0 ∗ t; y1 := t ∗ c

yielding SAC

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4; y1 := v4 ∗ c

for some passive value c, i.e, no deriva-
tives of or with respect to required; x,y,
and t are active.

,
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STCE
Tangents by Overloading
Seed

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ] [x

(1)
1 ]

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

x0 :=?
x1 :=?

x
(1)
0 :=?

x
(1)
1 :=?

,
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STCE
Tangents by Overloading
Propagate (Local Directional Derivatives)

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ] [x

(1)
1 ]

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

,
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STCE
Tangents by Overloading
Propagate

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ] [x

(1)
1 ]

[v
(1)
2 ]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

,
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STCE
Tangents by Overloading
Propagate

s

0: x0 1: x1

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ] [x

(1)
1 ]

[v
(1)
3 ]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1
v
(1)
4 := (v

(1)
3 − v4 ∗ x

(1)
1 )/x1

,
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STCE
Tangents by Overloading
Propagate

s

0: x0

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0 ]

[v
(1)
4 ]

[x0]

[v4]

[c]

v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1
v
(1)
4 := (v

(1)
3 − v4 ∗ x

(1)
1 )/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)0 + x0 ∗ v(1)4

,
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STCE
Tangents by Overloading
Propagate

s

4: /

5: y0(∗) 6: y1(∗c)

[y
(1)
0 ]

[v
(1)
4 ]

[c] v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1
v
(1)
4 := (v

(1)
3 − v4 ∗ x

(1)
1 )/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)0 + x0 ∗ v(1)4

y1 := v4 ∗ c
y
(1)
1 := c ∗ v(1)4

,
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STCE
Tangents by Overloading
Harvest

s

5: y0(∗) 6: y1(∗c)

[y
(1)
0 ] [y

(1)
1 ]

v2 := x0 ∗ x1
v
(1)
2 := x1 ∗ x(1)0 + x0 ∗ x(1)1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1
v
(1)
4 := (v

(1)
3 − v4 ∗ x

(1)
1 )/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)0 + x0 ∗ v(1)4

y1 := v4 ∗ c
y
(1)
1 := c ∗ v(1)4

,
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STCE
Tangents with dco/c++
Driver

User Guide: y(1) := ∇F (x) · x(1)

1 void driver(const vector<double>& xv, double &yv, vector<double> &g) {
2 typedef dco::gt1s<double>::type DCO T;
3 size t n=xv.size();
4 DCO T y=0;
5 for (size t i=0;i<n;i++) {
6 vector<DCO T> x(n,0);
7 for (size t j=0;j<n;j++) x[j]=xv[j];
8 dco::derivative(x[i])=1; // seed directions
9 f(x,y); // overloaded primal

10 g[i]=dco::derivative(y); // harvest directional derivatives
11 }
12 yv=dco::value(y); // extract function value
13 }

,
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STCE
Adjoints by Overloading
Adjoint lDAG (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

y0(1) y1(1)

Adjoint lDAG

We consider(
y0
y1

)
=

(
x0 ∗ sin(x0 ∗ x1)/x1
sin(x0 ∗ x1)/x1 ∗ c

)
implemented as

t := sin(x0 ∗ x1)/x1
y0 := x0 ∗ t
y1 := t ∗ c

yielding SAC

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c

for some passive value c.

,
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STCE
Adjoints by Overloading
Register (Independent Inputs with Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

x0 :=?
x1 :=?

,
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STCE
Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

,
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STCE
Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v3 := sin(v2)

,
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STCE
Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1

,
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STCE
Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4

,
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STCE
Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c

,
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STCE
Adjoints by Overloading
Seed

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

[y0(1) ] [y1(1) ]
v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
y0(1) :=?
y1(1) :=?
x0(1) :=?
x1(1) :=?
v2(1) := 0
v3(1) := 0
v4(1) := 0

,
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STCE
Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

[y0(1) ] [y1(1) ]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)

Note C++ Syntax:

v4(1)+ = c ∗ y1(1)
⇔

v4(1) := v4(1) + c ∗ y1(1) .

,
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STCE
Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[−v4/x1]

[y0(1) ]

[∂y1
v4(1) ] v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)

,
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STCE
Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

t

[x1] [x0]

[cos(v2)]

[1/x1]

[−v4/x1]

[∂y0
x0(1) ]

[v4(1) ]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1
v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)

,
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STCE
Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

t

[x1] [x0]

[cos(v2)]

[∂y0
x0(1) ] [∂v4x1(1) ]

[v3(1) ]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1
v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)

,
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STCE
Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

t

[x1] [x0]

[∂y0
x0(1) ] [∂v4x1(1) ]

[v2(1) ]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1
v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)
x0(1)+ = x1 ∗ v2(1)
x1(1)+ = x0 ∗ v2(1)

,
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STCE
Adjoints by Overloading
Harvest

0: x0 1: x1

t

[x0(1) ] [x1(1) ]

v2 := x0 ∗ x1
v3 := sin(v2)
v4 := v3/x1
y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1
v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)
x0(1)+ = x1 ∗ v2(1)
x1(1)+ = x0 ∗ v2(1)

,
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STCE
Adjoints with dco/c++
Driver

User Guide: x(1) := ∇F (x)T · y(1)

1 void driver(const vector<double> &xv, double &yv, vector<double> &g) {
2 typedef dco::ga1s<double> DCO M; // dco mode
3 typedef DCO M::type DCO T; // dco type
4 typedef DCO M::tape t DCO TAPE T; /dco tape type
5 size t n=xv.size();
6 vector<DCO T> x(n); DCO T y;
7 DCO M::global tape=DCO TAPE T::create(); // tape creation
8 for (size t i=0;i<n;i++) { // independent tape entries
9 x[i]=xv[i]; DCO M::global tape−>register variable(x[i]);

10 }
11 f(x,y); // overloaded primal
12 DCO M::global tape−>register output variable(y); // dependent tape entry
13 yv=dco::value(y); dco::derivative(y)=1; // seed
14 DCO M::global tape−>interpret adjoint(); // tape interpretation
15 for (size t i=0;i<n;i++) { g[i]=dco::derivative(x[i]); } // harvest
16 DCO TAPE T::remove(DCO M::global tape); // release tape
17 }

,
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STCE
Data Flow Reversal
DAG / Call Tree Reversal

-1 0

1

2

3

4 5

v5, v4, . . . , v−1

I U.N.: DAG Reversal is NP-Complete,
J. Disc. Alg. 7(4), 402-410 (2009).

I U.N.: Call Tree Reversal is
NP-Complete, LNCSE 64, 13-22 (2008).

I J. Lotz et al.: Mixed Integer Programming
for Call Tree Reversal, SIAM CSC (2016).

,
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STCE
Call Tree Reversal
Example: Let MEM = 1110 ...

R=(0,0):

f f

hh

gg g

+100

+1000

+100

+10 +10

−1000

−100−100

−10 −10

R=(1,1):

f f

g

h

g g

h hh

1000 1000

100 100

+1

+1

−1

−1

+10 +10

+100 +100

+1000

−10 −10

−100 −100

−1000

MEM=1220, OPS=0 MEM=1110, OPS=2200

,
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STCE
Call Tree Reversal
Example: Let MEM = 1110 ... Greedy Heuristics

Smallest Memory Increase starts
from R = 1 and yields . . .
Largest Memory Decrease (LMD)
starts from R = 0 and yields . . .

R=(0,1):

f f

hhh

gg g

+1 −1

+10 +10

+100 +100

+1000 −1000

−100 −100

−10 −10

1000

MEM=1110, OPS=1000

R=(1,0):

f f

h

g

h

g g

h

−1+1

+10 +10

+100 +100

−1000+1000

−100 −100

−10 −10

1000

100100

Largest Memory Increase (LMI) re-
mains at R = 1 as R = (1, 0) infea-
sible

MEM=1120, OPS=1200

,
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STCE
(Embedded) Symbolic Adjoints
Story

Algorithmic Differentiation (AD) is based on Symbolic Differentiation (SD).
AD approaches vary in terms of choice of SD level.

I U.N. et al.: Algorithmic differentiation of numerical methods: Tangent and
adjoint solvers for parameterized systems of linear equations, RWTH
Technical Report AIB-2012-10 (2012).

I U.N. et al.: Algorithmic differentiation of numerical methods: Tangent and
adjoint solvers for parameterized systems of nonlinear equations, ACM
TOMS 41 (4), 26 (2015).

I N. Safiran et al.: Algorithmic Differentiation of Numerical Methods:
Second-Order Adjoint Solvers for Parameterized Systems of Nonlinear
Equations, Procedia Computer Science 80, 2231-2235 (2016).

I J. Lotz et al.: A Case Study in Adjoint Sensitivity Analysis of Parameter
Calibration, Procedia Computer Science 80, 201-211 (2016).

,
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STCE
(Embedded) Symbolic Adjoints
Case Study: Root Finding

x2 − p = 0

x∗ ≈ √p

x(1) ·
(

2 · x · dx
dp
− 1

)
= 2 · x ·

(
x(1) ·

dx

dp

)
=p(1)

− x(1) = 0

p(1) =
x(1)

2·√p =
x(1)

2·x ≈ p
∗
(1) ≈ p̃

∗ ≈ x(1) · ẋ
∗−x∗

h

(x∗, G) =
→
S (x0, p) record

x(1) · d
dp

differentiate

p̃∗ = S̃(p̃0, x∗, x(1))

p∗(1) =
←
S (G, x(1))

interpret

ẋ∗ = S(x0, p+ h)perturb

,
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STCE
(Embedded) Symbolic Adjoints
Case Study: Optimization

argmin
x(p)

1
3 · x

3 − p · x+ q

x∗ ≈ √p

x(1) ·
(

2 · x · dx
dp
− 1

)
= 2 · x ·

(
x(1) ·

dx

dp

)
=p(1)

− x(1) = 0

p(1) =
x(1)

2·√p =
x(1)

2·x ≈ p
∗
(1) ≈ p̃

∗ ≈ x(1) · ẋ
∗−x∗

h

(x∗, G) =
→
S (x0, p) record

x(1) · d
dp

differentiate
first-order
optimality
condition

p̃∗ = S̃(p̃0, x∗, x(1))

p∗(1) =
←
S (G, x(1))

interpret

ẋ∗ = S(x0, p+ h)perturb

,
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STCE
Adjoint Code Design Patterns
Case Study: Ensemble of Evolutions

,
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