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Computing Risk in Monte Carlo

Section 2

Computing Risk in Monte Carlo
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Computing Risk in Monte Carlo Option Pricing Problems

Option Pricing Problems

I Option pricing problems can be typically formulated in terms of the
calculation of expectation values of the form

V = EQ

[
P(X (T1), . . . ,X (TM))

]
.

I Here X (t) is a N-dimensional vector and represents the value of a set
of underlying market factors (e.g., stock prices, interest rates, foreign
exchange pairs, etc.) at time t.

I P(X (T1), . . . ,X (TM)) is the discounted payout function of the priced
security, and depends in general on M observations of those factors.

I In the following, we will indicate the collection of such observations
with a d = N ×M dimensional state vector

X = (X (T1), . . . ,X (TM))T .
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Computing Risk in Monte Carlo Option Pricing Problems

Monte Carlo Sampling of the Payoff Estimator

I The expectation value above can be estimated by means of Monte
Carlo (MC) by sampling a number NMC of random replicas of the
underlying state vector X [1], . . . ,X [NMC], sampled according to the
distribution Q(X ), and evaluating the payout P(X ) for each of them.

I This leads to the estimate of the option value V as

V ' 1

NMC

NMC∑
iMC=1

P (X [iMC]) ,

with standard error Σ/
√
NMC, where

Σ2 = EQ[P (X )2]− EQ[P (X )]2

is the variance of the sampled payout.
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Computing Risk in Monte Carlo Pathwise Derivative Method

Pathwise Derivative Method

I The Pathwise Derivative Method allows the calculation of the
sensitivities of the option price V with respect to a set of Nθ
parameters θ = (θ1, . . . , θNθ

), with a single set of NMC simulations.
I This can be achieved by noticing that, whenever the payout function

is regular enough, e.g., Lipschitz-continuous, and under additional
conditions that are often satisfied in financial pricing (see, e.g., [1]),
one can write the sensitivity 〈θ̄k〉 ≡ dV /dθk as

〈θ̄k〉 = EQ

[dPθ (X )

dθk

]
.

I In the context of MC simulations, this equation can be easily
understood by thinking the random sampling of the state vector X as
performed in terms of a mapping of the form, X = X (θ;Z ), where Z
is a random vector independent of θ. In fact, after this mapping, the
expectation value EQ[. . .] can be expressed as an average over the
probability distribution of Z , Q(Z ), which is independent of θ.
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Computing Risk in Monte Carlo Pathwise Derivative Method

Pathwise Derivative Method: Interpretation

I The calculation of 〈θ̄k〉 can be performed by applying the chain rule,
and averaging on each MC sample the so-called Pathwise Derivative
Estimator

θ̄k ≡
dPθ(X )

dθk
=

d∑
j=1

∂Pθ(X )

∂Xj
×
∂Xj

∂θk
+
∂Pθ(X )

∂θk
.

I The matrix of derivatives of each state variable, or Tangent state
vector, is by definition given by

∂Xj

∂θk
= lim

∆θ→0

Xj (θ1, . . . , θk + ∆θ, . . . , θNθ
)− Xj (θ)

∆θ
.

I This gives the intuitive interpretation of ∂Xj/∂θk in terms of the
difference between the sample of the j-th component of the state
vector obtained after an infinitesimal ‘bump’ of the k-th parameter,
Xj (θ1, . . . , θk + ∆θ, . . . , θNθ

), and the base sample Xj (θ), both
calculated on the same random realization.
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Computing Risk in Monte Carlo Pathwise Derivative Method

Pathwise Derivative Method: Diffusions

I Consider the case for instance in which the state vector X is a path of
a N-dimensional diffusive process,

dX (t) = µ(X (t), t, θ) dt + σ(X (t), t, θ) dWt ,

with X (t0) = X0. Here the drift µ(X , t, θ) and volatility σ(X , t, θ) are
N-dimensional vectors and Wt is a N-dimensional Brownian motion
with instantaneous correlation matrix ρ(t) defined by
ρ(t) dt = EQ

[
dWtdW

T
t

]
.

I The Pathwise Derivative Estimator may be rewritten as

θ̄k =
M∑

l=1

N∑
j=1

∂ P(X (T1), . . . ,X (TM))

∂Xj (Tl )

∂Xj (Tl )

∂θk
+
∂Pθ(X )

∂θk

where we have relabeled the d components of the state vector X
grouping together different observations Xj (T1), . . . ,Xj (TM) of the
same (j-th) asset.
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Computing Risk in Monte Carlo Pathwise Derivative Method

Pathwise Derivative Method: Diffusions

I In particular, the components of the Tangent vector for the k-th
sensitivity corresponding to observations at times (T1, . . . ,TM) along
the path of the j-th asset, say,

∆jk (Tl ) =
∂Xj (Tl )

∂θk

with l = 1, . . . ,M, can be obtained by solving a stochastic differential
equation

d∆jk(t) =
N∑

i=1

[
∂µj (X (t), t; θ)

∂Xi (t)
dt +

∂σj (X (t), t; θ)

∂Xi (t)
dW j

t

]
∆ik (t)

+

[
∂µj (X (t), t; θ)

∂θk
dt +

∂σj (X (t), t; θ)

∂θk
dW j

t

]
,

with the initial condition ∆jk (0) = ∂Xj (0)/∂θk .
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Computing Risk in Monte Carlo Pathwise Derivative Method

Pathwise Derivative Method: Is it worth the trouble?

I The Pathwise Derivative Estimators of the sensitivities are
mathematically equivalent to the estimates obtained by standard finite
differences approaches when using the same random numbers in both
simulations and for a vanishing small perturbation. In this limit, the
Pathwise Derivative Method and finite differences estimators provide
exactly the same estimators for the sensitivities, i.e., estimators with
the same expectation value, and the same MC variance.

I As a result, the implementation effort associated with the Pathwise
Derivative Method is generally justified if the computational cost of
the Pathwise Estimator is significantly less than the corresponding
finite differences one.

I This is the case for instance in very simple models but difficult to
achieve for those used in the financial practice.

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 12 / 144



Adjoint Algorithmic Differentiation (AAD)

Section 3

Adjoint Algorithmic Differentiation (AAD)

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 13 / 144



Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

‘Algebraic’ Adjoint Methods

I In 2006 Mike Giles and Paul Glasserman published a ground breaking
‘Smoking Adjoints’ in Risk Magazine [6].

I They proposed a very efficient implementation of the Pathwise
Derivative Method in in the context of the Libor Market Model for
European payouts (generalized to Bermudan options by Leclerc et al.
[3] and extended by Joshi et al. [5]).

I In a nutshell:

1. Concentrate on the Tangent process and formulate it propagation in
terms of Linear Algebra operations.

2. Optimize the computation time by rearranging the order of the
computations.

3. Implement the rearranged sequence of operations.

I In the following we denote these Adjoint approaches as algebraic.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Libor Market Model

I Let’s indicate with Ti , i = 1, . . . ,N + 1, a set of N + 1 bond
maturities, with spacings δ = Ti+1 − Ti (constant for simplicity).

I In a Lognormal setup the dynamics of the forward Libor rates as seen
at time t for the interval [Ti ,Ti+1), Li (t), takes the form

dLi (t)

Li (t)
= µi (L(t))dt + σi (t)TdWt ,

0 ≤ t ≤ Ti , and i = 1, . . . ,N, where Wt is a dW -dimensional
standard Brownian motion, L(t) is the N-dimensional vector of Libor
rates, and σi (t) the dW -dimensional vector of volatilities, at time t.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Libor Market Model: Euler Discretization

I The dynamics of the forward Libor rates can be simulated by applying
a Euler discretization to the logarithms of the forward rates.

I By dividing each interval [Ti ,Ti+1) into Ns steps of equal width,
h = δ/Ns . This gives

Li (tn+1)

Li (tn)
= exp

[(
µi (L(tn))− ||σi (tn)||2/2

)
h + σT

i (n)Z (tn)
√
h
]
,

for i = η(nh), . . . ,N, and Li (tn+1) = Li (tn) if i < η(nh). Here Z is a
dW -dimensional vector of independent standard normal variables and
t0 is today.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Swaption Payout

I The standard test case are contracts with expiry Tm to enter in a
swap with payments dates Tm+1, . . . ,TN+1, at a fixed rate K

V (Tm) =
N+1∑

i=m+1

B(Tm,Ti )δ(Sm(Tm)− K )+,

where B(Tm,Ti ) is the price at time Tn of a bond maturing at time
Ti

B(Tm,Ti ) =
i−1∏
l=m

1

1 + δLl (Tm)
,

and the swap rate reads

Sm(Tm) =
1− B(Tm,TN+1)

δ
∑N+1

l=m+1 B(Tm,Tl )
.

I Here we consider European style payouts. It is simple to generalize to
Bermudan options (see [3]).
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Pathwise Derivative Estimator for Delta

I The Pathwise Estimator for the Delta,

L̄k (t0) =
∂V (Tm)

∂Lk (t0)
,

reads:

L̄k (t0) =
N∑

j=1

∂V (Tm)

∂Lj (Tm)

∂Lj (Tm)

∂Lk (t0)
=
∂V (Tm)

∂L(Tm)

T

∆(Tm),

where the Tangent process is

∆jk(t) =
∂Lj (t)

∂Lk (t0)
.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Euler Evolution of the Tangent Process

I By differentiating the Euler discretization for the Libor dynamics one
obtains the Euler discretization of the Tangent process dynamics:

∆ik(tn+1) = ∆ik (tn)
Li (tn+1)

Li (tn)
+ Li (tn+1)

N∑
j=1

∂µi (tn)

∂Lj (tn)
∆jk (tn),

where ∆ik(t0) = ∂Li (t0)/∂Lk (t0) = δjk .

I The evolution of the Tangent process can be expressed as the matrix
recursion:

∆(tn+1) = B(tn)∆(tn+1)

where B(tn) is an N × N matrix.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Standard (Forward) Implementation of the Pathwise
Derivative Estimator

I A standard implementation for the calculation of the Pathwise
Estimator

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

∆(Tm),

where Tm = tM , with M = Ns ×m, involves:
1. Apply the matrix recursion

∆(tn+1) = B(tn)∆(tn),

M times starting from ∆ik (t0) = δjk in order to compute ∆(Tm). The
total cost in the general case is O(MN3).

2. Compute analytically the derivatives of the payoff

∂V (Tm)

∂L(Tm)
,

and multiply it by ∆(Tm), at a cost O(N2).
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Standard (Forward) Implementation of the Pathwise
Derivative Estimator

I This involves proceeding from right to left (i.e., forward in time):

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

at a total computational cost O(MN3) in the general case.

I However, a simple observation allows a much more efficient
implementation...
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Adjoint (Backward) Implementation

I After completing the evolution of the Libor path up to Tm the right
hand side of

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

can be computed from left to right (i.e., backward in time) by taking
the transpose (i.e., the ‘Adjoint’)

L̄k (T0)T = ∆(t0)B(t0)T . . .B(tM−1)T ∂V (Tm)

∂L(Tm)
,

or equivalently as

L̄k (T0)T = ∆(t0)A(t0)T

where the A(t0) is the N dimensional vector given by the
matrix-vector recursion

A(tn) = B(tn)TA(tn+1) Ak (tM) =
∂V (Tm)

∂Lk (Tm)
.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Forward vs Adjoint: Computational Complexity

Compare:

I The forward computation of the Pathwise Estimator

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

which consists of M matrix-matrix products and a final matrix-vector
product for an overall cost of O(MN3) in the general case.

I The Adjoint computation of the Pathwise Estimator

L̄k (T0)T = ∆(t0)B(t0)T . . .B(tM−1)T ∂V (Tm)

∂L(Tm)
,

which consists of M + 1 matrix-vector products with an overall
computational cost of O(MN2).

I The Adjoint implementation is O(N) cheaper than the forward one.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Forward vs Adjoint: Computational Complexity

I As a result, computing the Pathwise Derivative Estimators for Delta
has the same computational complexity of propagating the forward
Libor rates and evaluating the payout.

I This means that we can get all the Delta sensitivities at a cost that is
of the same order of magnitude than computing the payout (rather
than O(N) larger if we were computing the Deltas by bumping).

I The same results holds also for Vega.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Algebric Adjoint Methods

From Ref. [6]

Arbitrary number of sensitivities at a fixed small cost.
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Adjoint Algorithmic Differentiation (AAD) Algebraic Adjoint Approaches

Limitations of Algebraic Adjoint Methods

The Libor Market Model is bit of an ad-hoc application:

I Difficult to generalize to Path Dependent Options or multi asset
simulations.

I The required algebraic analysis is in general cumbersome.

I Not general enough for all the applications in Finance.

I The derivatives required are often not available in closed form.

I What about the derivatives of the payout?
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Adjoint Approaches: AAD

I Adjoint implementations can be seen as instances of a programming
technique known as Adjoint Algorithmic Differentiation (AAD) [4].

I In general AAD allows the calculation of the gradient of an algorithm
at a cost that is a small constant (∼ 4) times the cost of evaluating
the function itself, independent of the number of input variables.

I Given that for each random realization the Payoff estimator can be
seen as a map

θk → P(X (θk )),

AAD allows the calculation of the Pathwise Derivative Estimators for
any number of sensitivities

θ̄k =
∂P(X (θk ))

∂θk
,

at a small fixed cost, similarly to the Algebric Adjoint applications of
the Libor Market Model, but now in complete generality.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Differentiation

I Algorithmic Differentiation (AD) is a set of programming techniques
first introduced in the early 60’s aimed at computing accurately and
efficiently the derivatives of a function given in the form of a
computer program.

I The main idea underlying AD is that any such program can be
interpreted as the composition of functions each of which is in turn a
composition of basic arithmetic (addition, multiplication etc.), and
intrinsic operations (logarithm, exponential, etc.).

I Hence, it is possible to calculate the derivatives of the outputs of the
program with respect to its inputs by applying mechanically the rules
of differentiation.

I This makes it possible to generate automatically a computer program
that evaluates efficiently and with machine precision accuracy the
derivatives of the function [4].
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Differentiation

I What makes AD particularly attractive when compared to standard
(e.g., finite difference) methods for the calculation of the derivatives,
is its computational efficiency.

I In fact, AD aims at exploiting the information on the structure of the
computer function, and on the dependencies between its various
parts, in order to optimize the calculation of the sensitivities.

I AD comes in two main flavors, Tangent and Adjoint mode, which are
characterized by different properties in different (complementary)
computational complexity.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Differentiation: Tangent mode

I Consider a function
Y = FUNCTION(X )

mapping a vector X in Rn in a vector Y in Rm.
I The execution time of its Tangent counterpart

Ẋ = FUNCTION d(X , Ẋ )

(with suffix d for “dot”) calculating the linear combination of the
columns of the Jacobian of the function:

Ẏj =
n∑

i=1

Ẋi
∂Yj

∂Xi
,

with j = 1, . . . ,m, is bounded by

Cost[FUNCTION d]

Cost[FUNCTION]
≤ ωT

with ωT ∈ [2, 5/2].
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Differentiation: Adjoint mode

I The execution time of the Adjoint counterpart of

Y = FUNCTION(X ),

namely,
X̄ = FUNCTION b(X , Ȳ )

(with suffix b for “backward” or “bar”) calculating the linear
combination of the rows of the Jacobian of the function:

X̄i =
m∑

j=1

Ȳj
∂Yj

∂Xi
,

with i = 1, . . . , n, is bounded by

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA

with ωA ∈ [3, 4].
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Algorithmic Differentiation: Tangent vs Adjoint mode

Given the results above:

I The Tangent mode is particularly well suited for the calculation of
(linear combinations of) the columns of the Jacobian matrix.

I Instead, the Adjoint mode is particularly well-suited for the calculation
of (linear combinations of) the rows of the Jacobian matrix .

I In particular, the Adjoint mode provides the full gradient of a scalar
(m = 1) function at a cost which is just a small constant times the
cost of evaluating the function itself. Remarkably such relative cost is
independent of the number of components of the gradient.

I When the full Jacobian is required, the Adjoint mode is likely to be
more efficient than the Tangent mode when the number of
independent variables is significantly larger than the number of the
dependent ones (m� n). Or viceversa.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I Imagine that the function Y = FUNCTION(X ) is implemented by
means of a sequence of steps

X → . . . → U → V → . . . → Y ,

where the real vectors U and V represent intermediate variables used
in the calculation and each step can be a distinct high-level function
or even an individual instruction.

I Define the Tangent of any intermediate variable Uk as

U̇k =
n∑

i=1

Ẋi
∂Uk

∂Xi
.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I Using the chain rule we get,

V̇j =
n∑

i=1

Ẋi
∂Vj

∂Xi
=

n∑
i=1

Ẋi

∑
k

∂Vj

∂Uk

∂Uk

∂Xi
=
∑

k

∂Vj

∂Uk
U̇k ,

which corresponds to the Tangent mode equation for the intermediate
step represented by the function V = V (U)

V̇j =
∑

k

U̇k
∂Vj

∂Uk
,

namely a function of the form V̇ = V̇ (U, U̇).
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I Hence the computation of the Tangents can be executed in the same
direction of the original function

Ẋ → . . . → U̇ → V̇ → . . . → Ẏ .

This can be executed simultaneously with the original function, since
at each intermediate step U → V one can compute the derivatives
∂Vj (U)/∂Uk and execute the Tangent forward propagation

U̇ → V̇ V̇j =
∑

k

U̇k
∂Vj

∂Uk
.

I The Tangent of the output obtained with this forward recursion is by
definition:

Ẏk =
n∑

i=1

Ẋi
∂Yk

∂Xi
,

i.e., in a single forward sweep one can produce a linear combination of
the columns of the Jacobian ∂Y /∂X .
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I The Tangent mode produces the linear combination of columns of the
Jacobian

Ẏk =
n∑

i=1

Ẋi
∂Yk

∂Xi
,

where Ẋ is an arbitrary vector in Rn.

I By initializing in turn Ẋ with each vector of the canonical basis in Rn,
(e1, . . . , en) with

ej = (0, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0)

one can obtain the partial derivatives of all the outputs with respect
to each of the inputs Ẏk = ∂Yk/∂Xi , thus resulting in a cost that is n
times the cost of a single forward Tangent sweep.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I It is not difficult to realize that the cost of computing each single step
U̇ → V̇ is just a small multiple of the cost of executing U → V .

I Going at the level of a single instruction:

V1 = V1(U1,U2)

V̇1 =
∂V1

∂U1
U̇1 +

∂V1

∂U2
U̇2

For instance:

V1 = U1U2

V̇1 = U2U̇1 + U1U̇2

Key Observation: One multiply in the original nonlinear calculation
turns into 2 multiply and one add operations in forward mode.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent mode: Propagating Forwards

I Extending to the whole computation one can see how keeping into
account of the relative cost of different types of operation one can
arrive to the result [4]:

Cost[FUNCTION d]

Cost[FUNCTION]
≤ ωT

with ωT ∈ [2, 5/2].

I By performing simultaneously the calculation of all the components of
the gradient one can optimize the calculation by reusing a certain
amount of computations (for instance the arc derivatives). This leads
to a more efficient implementation also known as Tangent
Multimode. The constant ωT for these implementations is generally
smaller than in the standard Tangent mode.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Adjoint mode: Propagating Backwards

I Let’s consider again the function Y = FUNCTION(X ) implemented by
means of a sequence of steps

X → . . . → U → V → . . . → Y .

I Define the Adjoint of any intermediate variable Vk as

V̄k =
m∑

j=1

Ȳj
∂Yj

∂Vk
,

where Ȳ is vector in Rm.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Adjoint mode: Propagating Backwards

I Using the chain rule we get,

Ūi =
m∑

j=1

Ȳj
∂Yj

∂Ui
=

m∑
j=1

Ȳj

∑
k

∂Yj

∂Vk

∂Vk

∂Ui
,

which corresponds to the Adjoint mode equation for the intermediate
step represented by the function V = V (U)

Ūi =
∑

k

V̄k
∂Vk

∂Ui
,

namely a function of the form Ū = V̄ (U, V̄ ).
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Adjoint mode: Propagating Backwards

I Starting from the Adjoint of the outputs, Ȳ , we can apply this rule to
each step in the calculation, working from right to left,

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ

until we obtain X̄ , i.e., the following linear combination of the rows of
the Jacobian ∂Y /∂X

X̄i =
m∑

j=1

Ȳj
∂Yj

∂Xi
,

with i = 1, . . . , n.

I Contrary to the Tangent mode, the backward propagation can start
only after the calculation of the function an the intermediate variables
have been computed and stored.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Adjoint mode: Propagating Backwards

I It is not difficult to realize that the cost of computing each single step
Ū ← V̄ is just a small multiple of the cost of executing U → V .

I Going at the level of a single instruction:

V1 = V1(U1,U2)

Ū1 = Ū1 +
∂V1

∂U1
V̄1

Ū2 = Ū2 +
∂V1

∂U2
V̄1

For instance:

V1 = U1U2

Ū1 = Ū1 + U2V̄1

Ū2 = Ū2 + U1V̄1

Key Observation: One multiply in the original nonlinear calculation
turns into 2 multiply-add operations in adjoint mode.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Adjoint mode: Propagating Backwards

I Extending to the whole computation one can see how keeping into
account of the relative cost of different types of operation one can
arrive to the result [4]:

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA

with ωA ∈ [3, 4].
I This result is based on the number of arithmetic operations which

must be performed. It also includes the cost of memory operations,
but assumes a uniform cost for these, irrespective of the total amount
of memory used. This assumption is violated in practice due to the
cache hierarchy in modern computers.

I Nevertheless, it remains true in practice that one can obtain the
sensitivity of a single output, or a linear combination of outputs, to an
unlimited number of inputs for only a little more work than the
original calculation.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Recap: Tangent vs Adjoint

I When computing the Jacobian of a composition of N functions:
Rn → Rm

y = fN ◦ fN−1 ◦ . . . ◦ f1(x)

Ji =
∂fi
∂z

we have 2 main ways of applying the chain rule:

Tangent Adjoint

ẏ = ∂y
∂x ẋ x̄ = (∂y

∂x )T ȳ

ẏ = JN . . . J1ẋ x̄ = JT
1 . . . JT

N ȳ

I The calculation of the Jacobian is O(n) in the tangent mode and
O(m) in the adjoint mode.

I The adjoint mode is particularly well suited for the computation of
gradients.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

First Examples: Derivatives of Payoff Functions

I As a first example let’s consider the Payoff of a Basket Option

P(X (T )) = e−rT

(
N∑

i=1

wiXi (T )− K

)+

,

where X (T ) = (X1(T ), . . . ,XN(T )) represent the value of a set of N
underlying assets, say a set of equity prices, at time T , wi ,
i = 1, . . . ,N, are the weights defining the composition of the basket,
K is the strike price, and r is the risk free yield for the considered
maturity.

I For this example, we are interested in the calculation of the
sensitivities with respect to r and the N components of the state
vector X so that the other parameters, i.e., strike and maturity, are
seen here as dummy constants.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Pseudocode of the Basket Option

From Ref. [2]

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 46 / 144



Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Pseudocode of the Tangent Payoff for the Basket Option

(P, P_d)= payout_d(r, X[N], r_d, X_d[N]){

  B = 0.0;

  for (i = 1 to N) {

   B += w[i]*X[i];

   B_d += w[i]*X_d[i];

  }

  x = B - K;

  x_d = B_d;

  D = exp(-r * T);

  D_d = -T * D * r_d;

  P = D * max(x, 0.0);

  P_d = 0;

  if(x > 0)

   P_d = D_d*x + D*x_d;

};

From Ref. [2]

I The computational cost of the Tangent payoff is of the same order of the original Payoff.

I To get all the components of the gradient of the payoff, the Tangent payoff code must be
run N + 1 times, setting in turn one component of the Tangent input vector I = (ṙ , Ẋ )t

to one and the remaining ones to zero.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Pseudocode of the Adjoint Payoff for the Basket Option

From Ref. [2]

I The Adjoint payoff contains a forward sweep.

I The computational cost of the Adjoint payoff is of the same order of the original Payoff.

I All the components of the gradient of the payoff, are obtained by running the Adjoint
payoff only once setting P̄ = 1.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent vs Adjoint

From Ref. [2]
I The Tangent payoff performs similarly to bumping (much better for the Multimode

version) and has a computational complexity that scales with the number of inputs.
I In the Adjoint mode the calculation of all the derivatives of the payoff requires an extra

overhead of just 70% with respect to the calculation of the payoff itself for any number of
inputs.
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Adjoint Algorithmic Differentiation (AAD) Algorithmic Adjoint Approaches (AAD)

Tangent vs Adjoint

I In general we are interested in computing the sensitivities of a
derivative or of a portfolio of derivatives with respect to a large
number of risk factors.

I The Adjoint model of Algorithmic Differentiation is therefore the one
best suited for the task.

I In some applications, however, one is also interested in computing the
sensitivities of a multiplicity of derivatives individually. In those cases
one can effectively combine the Adjoint and Tangent mode. See e.g.
[2].

I In the following we will concentrate on the Adjoint mode of
Algorithmic Differentiation (AAD) as it is the one of wider
applicability.
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AAD as a Software Design Principle

Section 4

AAD as a Software Design Principle
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AAD as a Software Design Principle

AAD as a Software Design Principle

I The propagation of the Adjoints according to the steps, being
mechanical in nature, can be automated.

I Several AD tools are available that given a procedure of the form:

Y = FUNCTION(X ),

generate the Adjoint function:

X̄ = FUNCTION b(X , Ȳ ).

I An excellent source of information can be found at www.autodiff.org.
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AAD as a Software Design Principle

AAD as a Software Design Principle

I The principles of AD can be used as a programming paradigm for any
algorithm.

I An easy way to illustrate the Adjoint design paradigm is to consider
again the arbitrary computer function

Y = FUNCTION(X ),

and to imagine that this represents a certain high level algorithm that
we want to differentiate.

I By appropriately defining the intermediate variables, any such
algorithm can be abstracted in general as a composition of functions
like

X → . . . → U → V → . . . → Y .
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AAD as a Software Design Principle

AAD as a Software Design Principle

I However, the actual calculation graph might have a more complex
structure. For instance the step U → V might be implemented in
terms of two computer functions of the form

V 1 := V1(U1) ,

V 2 := V2(U1,U2) ,

with U = (U1,U2)t and V = (V 1,V 2)t . Here the notation
W = (W 1,W 2)t simply indicates a specific partition of the
components of the vector W in two sub-vectors.

I A natural way to represent the step Ū ← V̄ in

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ

i.e., the function Ū = V̄ (U, V̄ ), can be given in terms of an Adjoint
calculation graph.
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AAD as a Software Design Principle

AAD as a Software Design Principle

I The Adjoint graph has the same structure of the original graph with
each node/variable representing the Adjoint of the original
node/variable, and it is executed in opposite direction with respect to
the original one.
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AAD as a Software Design Principle

Forward and Backward Sweeps

I The Adjoint instructions

(Ū1, Ū2)t := V2 b(U1,U2, V̄ 2) ,

Ū1 := Ū1 + V1 b(U1, V̄ 1) .

depend on the variables U1 and U2.
I As a result, the Adjoint algorithm can be executed only after the

original instructions

X → . . . → U → V → . . . → Y .

have been executed and the necessary intermediate results have been
computed and stored.

I This is the reason why, as note before, the Adjoint of a given
algorithm generally contains a forward sweep, which reproduces the
steps of the original algorithm, plus a backward sweep, which
propagates the Adjoints.
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AAD as a Software Design Principle

AAD as a Software Design Principle

I The principles of AD can be used as a programming paradigm for any algorithm.
I The Adjoint graph has the same structure of the original graph with each node/variable

representing the Adjoint of the original node/variable, and it is executed in opposite
direction with respect to the original one.
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AAD and the Pathwise Derivative Method

Section 5

AAD and the Pathwise Derivative Method
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AAD and the Pathwise Derivative Method

AAD and the Pathwise Derivative Method

I AAD provides a general design and programming paradigm for the
efficient implementation of the Pathwise Derivative Method.

I This stems from the observation that the Pathwise Estimator in

θ̄k ≡
dPθ(X )

dθk
=

d∑
j=1

∂Pθ(X )

∂Xj
×
∂Xj

∂θk
+
∂Pθ(X )

∂θk
,

is a l.c. of the rows of the Jacobian of the map θ → X (θ), with
weights given by the X gradient of the payout function Pθ(X ), plus
the derivatives of the payout function with respect to θ.

I Both the calculation of the derivatives of the payout and of the linear
combination of the rows of ∂X/∂θ are tasks that can be performed
efficiently by AAD.

I We know now that we can compute all the Pathwise sensitivities with
respect to θ, θ̄, at a cost that is at most roughly 4 times the cost of
calculating the payout estimator itself.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Forward Sweep

I In a typical MC simulation, in order to generate each sample X [iMC],
the evolution of the process X is usually simulated, possibly by means
of an approximate discretization scheme, by sampling X (t) on a
discrete grid of points, 0 = t0 < t1 < . . . < tn < · · · < tNs , a superset
of the observation times (T1, . . . ,TM).

I The state vector at time tn+1 is obtained by means of a function of
the form

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

mapping the set of state vector values on the discretization grid up to
tn, {X (tm)}m≤n, into the value of the state vector at time tn + 1.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Forward Sweep

I Note that in X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ] :

a The propagation method is a function of the model parameters θ and
of the particular time step considered.

b Z (tn) indicates the vector of uncorrelated random numbers which are
used for the MC sampling in the step n→ n + 1.

c The initial values of the state vector X (t0) are known quantities and
they can be considered as components of θ so that the n = 0 step is of
the form, X (t1) = PROP0[Z (t0), θ].

I Once the full set of state vector values on the simulation time grid
{X (tm)}m≤Ns is obtained, the subset of values corresponding to the
observation dates is passed to the the payout function, evaluating the
payout estimator Pθ(X ) for the specific random sample X [iMC]

(X (T1), . . . ,X (TM))→ Pθ(X (T1), . . . ,X (TM)).

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 61 / 144



AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Forward Sweep

Schematic illustration of the orchestration of a MC engine.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Backward Sweep

I The evaluation of a MC sample of a Pathwise Estimator can be seen
as an algorithm implementing a function of the form θ → P(θ).

I As a result, it is possible to design its Adjoint counterpart
(θ, P̄)→ (P, θ̄) which gives (for P̄ = 1) the Pathwise Derivative
Estimator dP/dθk .

I The backward sweep can be simply obtained by reversing the flow of
the computations, and associating to each function its Adjoint
counterpart.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Backward Sweep

I In particular, the first step of the Adjoint algorithm is the Adjoint of
the payout evaluation P = P(X , θ). This is a function of the form

(X̄ , θ̄) = P̄(X , θ, P̄),

where X̄ = (X̄ (T1), . . . , X̄ (TM)) is the Adjoint of the state vector on
the observation dates, and θ̄ is the Adjoint of the model parameters
vector, respectively (for P̄ = 1)

X̄ (Tm) =
∂Pθ(X )

∂X (Tm)
,

θ̄ =
∂Pθ(X )

∂θ
,

for m = 1, . . . ,M. The Adjoint of the state vector on the simulation
dates corresponding to the observation dates are initialized at this
stage. The remaining ones are initialized to zero.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Backward Sweep

I The Adjoint state vector is then propagated backwards in time
through the Adjoint of the propagation method, namely

({X̄ (tm)}m≤n, θ̄) += PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

for n = Ns − 1, . . . , 1 , giving

X̄ (tm) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂X (tm)
,

with m = 1, . . . , n,

θ̄+=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂θ
.

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 65 / 144



AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: Backward Sweep

I Here, according to the principles of AAD, the Adjoint of the
propagation method takes as arguments the inputs of its forward
counterpart, namely the state vectors up to time tn, {X (tm)}m≤n, the
vector of random variates Z (tn), and the θ vector. The additional
input is the Adjoint of the state vector at time tn+1, X̄ (tn+1).

I The return values of PROP bn are the contributions associated with
the step n + 1→ n to the Adjoints of

i) the state vector {X̄ (tm)}m≤n;
ii) the model parameters θ̄k , k = 1, . . . ,Nθ.

I The final step of the backward propagation corresponds to the
Adjoint of X (t1) = PROP0[Z (t0), θ], giving

θ̄+= PROP b0[X (t0)Z (t0), θ, X̄ (t1)],

i.e., the final contribution to the Adjoints of the model parameters.
I It is easy to verify that the final result is the Pathwise Derivative

Estimator dP/dθk for all k’s on the given MC path.
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AAD and the Pathwise Derivative Method

AAD enabled Monte Carlo Engines: The complete
blueprint

I The resulting algorithm can be illustrated as follows:

Schematic illustration of the orchestration of an AAD enabled MC engine.
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AAD and the Pathwise Derivative Method First Applications

Diffusion Processes and Euler Discretization

I As a first example, consider the case in which the underlying factors
follow multi dimensional diffusion processes introduced in slide 3

dX (t) = µ(X (t), t, θ) dt + σ(X (t), t, θ) dWt .

I In this case, the evolution of the process X is usually approximated by
sampling X (t) on a discrete grid of points by means, for instance, of
an Euler scheme, so that the propagation function

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ]

implements the rule

X (tn+1) = X (tn) + µ(X (tn), tn, θ) hn + σ(X (tn), tn, θ)
√
hn Z (tn),

where hn = tn+1 − tn, and Z (tn) is a N-dimensional vector of
correlated unit normal random variables.

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 68 / 144



AAD and the Pathwise Derivative Method First Applications

Diffusion Processes and Euler Discretization: Forward
Sweep

I In particular, given the state vector at time tn, X (tn), and the vector
Z (tn), one can implement the method PROPn according to the
following steps:

Step 1. Compute the drift vector, by evaluating the function:

µ(tn) = µ(X (tn), tn, θ) .

Step 2. Compute the volatility vector, by evaluating the function:

σ(tn) = σ(X (tn), tn, θ) .

Step 3. Compute the function

(X (tn), µ(tn), σ(tn),Z (tn), θ)→ X (tn+1) ,

defined by

X (tn+1) = X (tn) + µ(tn)hn + σ(tn)
√
hnZ (tn) .

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 69 / 144



AAD and the Pathwise Derivative Method First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I The corresponding Adjoint method PROP bn is executed from time
step tn+1 to tn and consists of the Adjoint counterpart of each of the
steps above executed in reverse order, namely:

Step 3̄. Compute the Adjoint of the function defined by Step 3. This is a
function

(X (tn), µ(tn), σ(tn),Z (tn), X̄ (tn+1))→ X̄ (tn)

defined by the instructions

X̄ (tn) += X̄ (tn+1),

µ̄(tn) = 0, µ̄(tn) += X̄ (tn+1)hn,

σ̄(tn) = 0, σ̄(tn) += X̄ (tn+1)
√
hn Z (tn),

Z̄ (tn) = 0, Z̄ (tn) += X̄ (tn+1)
√
hn σ(tn).
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AAD and the Pathwise Derivative Method First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I And:

Step 2̄. Compute the Adjoint of the volatility function in Step 2, namely

X̄i (tn) +=
N∑

j=1

σ̄j (tn)
∂σj (tn)

∂Xi
, θ̄k +=

N∑
j=1

σ̄j (tn)
∂σj (tn)

∂θk
,

for i = 1, . . . ,N and k = 1, . . . ,Nθ.
Step 1̄. Compute the Adjoint of the drift function in Step 1, namely

X̄i (tn) +=
N∑

j=1

µ̄j (tn)
∂µj (tn)

∂Xi (tn)
, θ̄k +=

N∑
j=1

µ̄j (tn)
∂µj (tn)

∂θk
,

for i = 1, . . . ,N and k = 1, . . . ,Nθ.
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AAD and the Pathwise Derivative Method First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I Note that, the variables X̄ (tn+1), X̄ (tn) and θ̄ typically contain on
input the derivatives of the payout function. During the backward
propagation X̄ (tn) (resp. θ̄) accumulate several contributions, one for
each Adjoint of an instruction in which X (tn) (resp. θ) is on the right
hand side of the assignment operator in the forward sweep (Steps
1-3).

I The implementation of the Adjoint of the drift and volatility functions
in Step 2̄ and Step 1̄ is problem dependent. In many cases, the drift
and volatility may be represented by computer routines self-contained
enough to be processed by means of an automatic differentiation tool,
thus facilitating the implementation.
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AAD and the Pathwise Derivative Method First Applications

Basket Options: Results

I Let’s consider again the Basket Option example introduced earlier for
the Payoff.

CPU time ratios for the calculation of Delta and Vega Risk as a function of the number of

underlying assets, N: circles (AAD), triangles (Bumping).
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AAD and the Pathwise Derivative Method First Applications

Basket Options: Comments

I The performance of the AAD implementation of the Pathwise
Derivative Method in this setup is well within the expected bounds.

I In particular, the computation of the 2× N sensitivities for the N
assets requires a very small overhead (of about 130%) with respect to
the calculation of the option value itself. This is true for any number
of underlying assets.

I This is in stark contrast with the relative cost of evaluating the same
sensitivities by means of finite-differences, scaling linearly with the
number of assets.

I For typical applications this clearly results in remarkable speedups
with respect to bumping.
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AAD and the Pathwise Derivative Method Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model

I Let’s consider again the application of the seminal paper by Giles and
Glasserman [6] See slide 2 and ff. Recall that:

I Ti , i = 1, . . . ,N + 1, is a set of N + 1 bond maturities, with spacings
δ = Ti+1 − Ti (constant for simplicity).

I In a Lognormal setup the dynamics of the forward Libor rates as seen
at time t for the interval [Ti ,Ti+1), Li (t), takes the form

dLi (t)

Li (t)
= µi (L(t))dt + σi (t)TdWt ,

0 ≤ t ≤ Ti , and i = 1, . . . ,N, where Wt is a dW -dimensional
standard Brownian motion, L(t) is the N-dimensional vector of Libor
rates, and σi (t) the dW -dimensional vector of volatilities, at time t.
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AAD and the Pathwise Derivative Method Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Euler Discretization

I The dynamics of the forward Libor rates can be simulated by applying
a Euler discretization to the logarithms of the forward rates.

I By dividing each interval [Ti ,Ti+1) into Ns steps of equal width,
h = δ/Ns . This gives

Li (tn+1)

Li (tn)
= exp

[(
µi (L(tn))− ||σi (tn)||2/2

)
h + σT

i (n)Z (tn)
√
h
]
,

for i = η(nh), . . . ,N, and Li (tn+1) = Li (tn) if i < η(nh). Here Z is a
dW -dimensional vector of independent standard normal variables and
t0 is today.
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AAD and the Pathwise Derivative Method Case Study: Adjoint Greeks for the Libor Market Model

Swaption Payout

I The standard test case are contracts with expiry Tm to enter in a
swap with payments dates Tm+1, . . . ,TN+1, at a fixed rate K

V (Tm) =
N+1∑

i=m+1

B(Tm,Ti )δ(Sn(Tm)− K )+,

where B(Tm,Ti ) is the price at time Tm of a bond maturing at time
Ti

B(Tm,Ti ) =
i−1∏
l=m

1

1 + δLl (Tm)
,

and the swap rate reads

Sm(Tm) =
1− B(Tm,TN+1)

δ
∑N+1

l=m+1 B(Tm,Tl )
.

I Here we consider European style payouts. It is simple to generalize to
Bermudan options (see [3]).
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AAD and the Pathwise Derivative Method Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Forward Sweep

Pseudocode implementing the propagation method PROPn for the Libor Market Model for

dW = 1, under the predictor corrector Euler approximation.
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Libor Market Model: Backward Sweep

Adjoint of the propagation method PROP bn [7].
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Libor Market Model: Comments on the Code

I The algebraic formulation discussed in [5] comes with a significant
analytical effort. Instead, as illustrated in the Figure above, the AAD
implementation is quite straightforward.

I According to the general design of AAD, this simply consists of the
Adjoints of the instructions in the forward sweep executed in reverse
order.

I In this example, the information computed by PROP that is required
by PROP b is stored in the vectors scra and hat scra.

I By inspecting the structure of the pseudocode it also appears clear
that the computational cost of PROP b is of the same order as
evaluating the original function.
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Libor Market Model: Results

Ratio of the CPU time required for the calculation of Delta and Vega and the time to calculate

the option value for the Swaption as a function of the option expiry Tn.
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Section 6

Correlation Greeks and Binning Techniques
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Correlation Structure of the Random Variates

Recall the general AAD MC design for the computation of the estimators
on each MC path:
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Correlation Structure of the Random Variates

I In the AAD MC design we have assumed for simplicity that the
random variates Z (tn) entering in the propagation method:

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

are dummy variables carrying no interesting sensitivities.

I As a result, in the corresponding adjoint propagation methods:

({X̄ (tm)}m≤n, θ̄) += PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

the adjoint of the random variates Z̄ (tn) do not appear among the
outputs.

I If we want to compute the sensitivities with respect to the correlation
structure of the random variates, this scheme needs to be extended.
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Correlation Structure of the Random Variates

I In a typical setup, the random variates Zi driving the random
processes are correlated.

I For instance, assume that the random variates Z (tn) are jointly
normal, and denote with ρij (tm) = E[Zi (tm)Zj (tm)] the correlation
matrix.

I Uncorrelated random variates Z ′(tn) are therefore mapped into their
correlated counterparts Z (tn) and then used to implement the
propagation step X (tn)→ X (tn+1) so that the propagation step is
modified as

Z (tn) = CORRELATE(Z ′(tn), θ)

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ] ,

where we have included the correlation parameters defining the
correlation matrix ρ in the vector θ.
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Modified Adjoint of the Propagation Step

I The adjoint of the Propagation Step

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

is modified as

({X̄ (tm)}m≤n, θ̄, Z̄ (tn)) += PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

where

X̄ (tm) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂X (tm)
θ̄+=

N∑
j=1

X̄j (tn+1)
∂Xj (tn+1)

∂θ
,

with m = 1, . . . , n. Here the additional output is given by the adjoint
of the correlated variates:

Z̄ (tn) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂Z (tn)
.
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Adjoint of the Correlation Step

I The adjoint of the Correlation Step

Z (tn) = CORRELATE(Z ′(tn), θ),

reads
θ̄+= CORRELATE b(Z ′(tn), θ, Z̄ (tn)),

corresponding to the operation

θ̄+=
N∑

j=1

Z̄ ′j (tn)
∂Zj (tn)

∂θ

updating the components of the vector θ corresponding to the adjoint
of the correlation parameters.
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Example: Cholesky Factorization

I In a simple setup the method CORRELATE generally involves the
so-called Cholesky factorization of an N × N correlation matrix ρ.

I Recall that the Cholesky factorization of a Hermitian positive-definite
matrix ρ produces a lower triangular N × N matrix L such that
ρ = LLT .

I Given the Cholesky factor L, and a vector of N uncorrelated normal
Z ′, it is immediate to verify that Z = LZ ′ are correlated normal such
that E[ZiZj ] = ρij .
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Adjoint of the Cholesky Factorization

I When implemented in terms of the Cholesky factorization, the
method CORRELATE reads

Step 1 Perform Cholesky factorization, say L = CHOLESKY(ρ).
Step 2 Compute: Z = LZ ′.

I The corresponding method CORRELATE b reads
Step 2̄ Compute: L̄ = Z̄Z ′t .
Step 1̄ Compute: ρ̄ = CHOLESKY b(ρ, L̄), where

ρ̄ij =
N∑

l,m=1

∂Ll,m

∂ρij
L̄lm,

providing the sensitivities with respect to the entries of the correlation
matrix. These are copied in the appropriate components of the vector
θ̄.

I Note that Z ′ are now dummy integration variables (sampled
stochastically). Thefore their adjoints Z̄ ′ are not computed.
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Adjoint of the Cholesky Factorization (Pseudocode)

Cholesky_b(rho, L_b,rho_b)   

   // Forward Sweep        
   for (i=0 .. n-1)                 
      for (j=i .. n-1)                       
      sum[i,j] = rho[i,j];                        

 for (k=i-1 .. 0)                                
    sum[i,j] -= L[i,k] * L[j,k];                        
    if (i == j) 

           L[i,i] = sqrt(sum[i,j]);                        
    else                                 
      L[j,i] = sum[i,j] / L[i,i];                        
        

   // Backward Sweep        
   for (i=n-1 .. 0)                 
      for (j=n-1 .. i)                         

    sum_b =  0.0;                        

         if (i == j)                                 
      if (sum[i,j] == 0.0) 

              sum_b = 0.0;  
           else 
              sum_b = L_b[i,j]/( 2.0 * L[i,j]);                                 
           L_b[i,j] = 0.0;                        
         else                                 
           sum_b = L_b[j,i]/L[i,i];                                
           L_b[i,i] -= sum[i,j] * sum_b / L[i,i]; 
           L_b[j,i] = 0.0; 

         for (k=i-1 .. 0)  
           L_b[i,k] -= L[j,k]*sum_b; 
           L_b[j,k] -= L[i,k]*sum_b; 

     
    rho_b[i,j] += sum_b; 
   

The adjoint algorithm contains the original
Cholesky factorization plus a backward
sweep with the same complexity and a
similar number of operations [8].

Hence, as expected, the computational cost
is just a small multiple (of order 2, in this
case) of the cost of evaluating the original
factorization.
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Adjoint of the Cholesky Factorization

I The Cholesky factorization L = CHOLESKY(ρ) does not depend on the
random variates Z therefore it can be performed before the first
Monte Carlo path is performed. As a result, CORRELATE consists of
the matrix multiplication Z = LZ ′, only.

I Similarly the Adjoint of CORRELATE b consists only of the step
L̄ = Z̄ ′Z t , (θ̄ will contain the adjoint of the Cholesky factors L rather
than the entries of the correlation matrix ρ) and the Adjoint of the
Cholesky factorization

ρ̄ = CHOLESKY b(ρ, L̄)

can be performed after the end of the backward sweep after the last
MC path.
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Statistical Uncertainties

I Given the MC estimators for the Cholesky factors sensitivities
〈L̄〉 = 〈∂V (X )/∂L〉 and their statistical uncertainties

〈L̄〉 =
1

NMC

NMC∑
iMC=1

L̄(X [iMC]) σL̄ =

√√√√ 1

NMC

NMC∑
iMC=1

(
L̄(X [iMC])2 − 〈L̄〉

)2

I One can compute the estimator for the correlation sensitivities via the
Cholsesky factorization

〈ρ̄〉 = CHOLESKY b(ρ, 〈L̄〉)

but not their sensitivities:

σρ̄ 6= CHOLESKY b(ρ, σL̄)

I Performing the adjoint of the Cholesky decomposition once per
simulation does not allow the calculation of a confidence interval for
the correlation sensitivities.
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Path by Path Adjoint Cholesky Factorization

I An alternative approach would be to convert L̄ to ρ̄ for each
individual path iMC = 1, . . . ,NMC

ρ̄(X [iMC]) = CHOLESKY b(ρ, L̄(X [iMC]))

and then compute the average and standard deviation of ρ̄[iMC] in the
usual way:

〈ρ̄〉 =
1

NMC

NMC∑
iMC=1

ρ̄(X [iMC]) σρ̄ =

√√√√ 1

NMC

NMC∑
iMC=1

(
ρ̄(X [iMC])2 − 〈ρ̄〉

)2

However, this is rather costly.
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Binning

I An excellent compromise between these two extremes is to divide the
NMC paths into NB ’bins’ of equal size n = N/NB.

I For each bin jB = 1, . . . ,NB, an average value of 〈L̄〉jB is computed

〈L̄〉jB =
1

n

n∑
iMC=1

L̄(X [iMC])

and converted into a corresponding value for

〈ρ̄〉jB = CHOLESKY b(ρ, 〈L̄〉jB).
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Binning

I These NB estimates for ρ̄ can then be combined in the usual way to
form an overall estimate of the correlation risk:

〈ρ̄〉 =
1

NB

NB∑
jB=1

〈ρ̄〉jB =
1

NMC

NMC∑
iMC=1

ρ̄(X [iMC]),

where the second equality follows from the linearity of the adjoint
functions, and the associated confidence interval:

σρ̄ =

√√√√ 1

NB

NB∑
jB=1

(
〈ρ̄〉2jB − 〈ρ̄〉

)2
.
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Binning

I In the standard evaluation, the cost of the Cholesky factorization is
O(N3) (where N is the number of random factors), and the cost of
the MC sampling is O(NMCN

2), so the total cost is
O(N3 + NMCN

2). Since NMC is always much greater than N, the
cost of the Cholesky factorization is usually negligible.

I The cost of the adjoint steps in the MC sampling is also O(NMCN
2),

and when using NB bins the cost of the adjoint Cholesky factorization
is O(NBN

3).

I To obtain an accurate confidence interval, but with the cost of the
Cholesky factorisation being negligible, requires that NB is chosen so
that 1� NB � NMC/N.

I Without binning, i.e., using NB = NMC, the cost to calculate the
average of the estimators for 〈ρ〉 is O(NMCN

3), and so the relative
cost compared to the evaluation of the option value is O(N).
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Binning and Risk Transforms

I We have presented Binning in the context of the calculation of
correlation risk, but there is nothing specific to correlation. In fact
these ideas can be applied everytime some computational
preprocessing is performed before the MC simulation, and we need to
transform the adjoint MC estimators and their confidence interval
into the corresponding quantities for the inputs of such preprocessing.

I This is the case for instance when a calibration routine performed
before the MC simulation transforms some market inputs
M = (M1, . . . ,MNM

), corresponding to the observable prices of
securities which the model is calibrated to, into the set of internal
model parameters that are used in the MC simulation θ:

θ = CALIBRATION(M).
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Binning and Risk Transforms

I The binned MC estimators of the adjoint of the internal model
parameters 〈θ̄〉jB can be transformed into binned MC estimators of
the market inputs

〈M̄〉jB = CALIBRATION B(M, 〈θ̄〉jB).

I Then their distribution can be used to construct the overall MC
estimator and the associated statistical uncertainty

〈M̄〉 =
1

NB

NB∑
jB=1

〈M̄〉jB ,

σM̄ =

√√√√ 1

NB

NB∑
jB=1

(
〈M̄〉2jB − 〈M̄〉

)2
.
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Credit Basket Contracts

I Credit basket contracts are derivatives that are contingent on credit
events (defaults for short) of a pool of reference entities typically
sovereign, financial or corporate. Generally the credit event is defined
as failure to pay a specific liability, say a coupon on a specific bond or
category of bonds referenced by the contract, but it can include other
events not involving a proper default, like a restructuring of the debt,
or regulatory action on a financial institution.

I n-th to default, Collateralized Debt Obligations (CDO) and their
variations are examples of credit basket products.

I In the context of basket credit default products the random factors Xi

are the time of default τi of the i-th reference entity in a basket of N
names and the payoff is of the form:

P = P(τ1, . . . , τN)
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Example: n-th to default Basket Default Swap

I In a n-th to default Basket Default Swap one party (protection buyer)
makes regular payments to a counterparty (protection seller) at time
T1, . . . ,TM ≤ T provided that less than n defaults events among the
components of the basket are observed before time TM .

I If n defaults occur before time T , the regular payments cease and the
protection seller makes a payment to the buyer of (1− Ri ) per unit
notional, where Ri is the normalized recovery rate of the i-th asset.

I The value at time zero of the Basket Default Swap on a given
realization of the default times τ1, . . . , τN , i.e., the Payout function,
can be expressed as

P(τ1, . . . , τN) = Pprot(τ1, . . . , τN)− Pprem(τ1, . . . , τN)

i.e., as the difference between the so-called protection and premium
legs.
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Example: n-th to default Basket Default Swap

I The value leg is given by

Pprot(τ1, . . . , τN) = (1− Rn)D(τ)I(τ ≤ T ),

where Rn and τ are the recovery rate and default time of the n-th to
default, respectively, D(t) is the discount factor for the interval [0, t]
(here we assume for simplicity uncorrelated default times and interest
rates), and I(τ ≤ T ) is the indicator function of the event that the
n-th default occurs before T .

I The premium leg reads instead, neglecting for simplicity any accrued
payment,

Pprem(τ1, . . . , τN) =

TM∑
k=1

ckD(Tk )I(τ ≥ Tk )

where ck is the premium payment (per unit notional) at time Tk .
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Copula Models

I Credit Basket Products are also known as correlation products
because their value depends not only on the marginal distribution of
the default times but also on their correlation structure.

I Such correlation structure is typically captured by means of a copula
model. For instance, in a Gaussian copula, the cumulative joint
distribution of default times is assumed of the form:

P(τ1 ≤ t1, . . . , τN ≤ tN) = ΦN(Φ−1(F1(t1)), . . . ,Φ−1(FN(tN)); ρ)

where ΦN(Z1, . . . ,ZN ; ρ) is a N-dimensional multivariate Gaussian
distribution with zero mean, and a N × N positive semidefinite
correlation matrix ρ; Φ−1 is the inverse of the standard normal
cumulative distribution, and Fi (t) = P(τi ≤ t), i = 1, . . . ,N, are the
marginal distributions of the default times of each reference entity,
depending on a set of model parameters θ.
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Hazard Rate Model

I The key concept for the valuation of credit derivatives, in the context
of the models generally used in practice, is the hazard rate, λu,
representing the probability intensity of default of the reference entity
between times u and u + du, conditional on survival up to time u.
The hazard rate function λu is commonly parameterized as piece-wise
constant with M knot points at time (t1, . . . , tM), λ = (λ1, . . . , λM), .

I By modelling the default event of a reference entity i as the first
arrival time of a Poisson process with intensity λi

u, the survival
probability, P(τi > t), is given by

P(τi > t) = exp

[
−
∫ t

0
du λi

u

]
,

so that the marginal cumulative distribution of default times reads

Fi (t;λi ) = P(τ ≤ t) = 1− exp

[
−
∫ t

0
du λi

u

]
,
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Forward Simulation Algorithm

The simulation of a Gaussian Copula model can be seen as a single
time-step instance of the general approach, consisting of the following
steps:

Step 0 Perform a Cholesky factorization of the matrix ρ, say
L = CHOLESKY(ρ).

For each MC replication:

Step 1 Generate an N dimensional vector of uncorrelated normal
Gaussian variates Z ′.

Step 2 Correlate the random variates: Z = CORRELATE(Z ′, L), where
as previously discussed the correlation step consist of a single matrix
vector multiplication Z = LZ ′.

Step 3 Perform the ‘propagation step’ τ = PROP0[Z , θ].

Step 4 Evaluate the payout function: P = P(τ).

Luca Capriotti Adjoint Algorithmic Differentiation Masterclass London, 8 March 2017 104 / 144



Correlation Greeks and Binning Techniques Case Study: Correlation Greeks for Basket Default Contracts

Forward Simulation Algorithm

I From the form of the cumulative joint distribution of default times

P(τ1 ≤ t1, . . . , τN ≤ tN ) = ΦN (Φ−1(F1(t1;λ1)), . . . ,Φ−1(FN (tN , λ
N )); ρ)

it follows that the random variates Φ−1(F1(τi , λ
i )) are distributed

according to a multivariate normal distribution.
I Hence the propagation step τ = PROP0[Z , θ] consists in turn of the

following sub-steps:

Step 3a Set Ui = Φ(Zi ), i = 1, . . . ,N.
Step 3b Set τi = F−1

i (Ui ;λi ), i = 1, . . . ,N.

where F−1
i (Ui ;λi ) is the root τi of the equation

exp

[
−
∫ τi

0
du λi

u

]
= 1− Ui .
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Adjoint Simulation Algorithm

I The corresponding adjoint algorithm consists of the following steps:

Step 4̄ Evaluate the adjoint Payout τ̄i = ∂P/∂τi , for i = 1, . . . ,N.
Step 3̄ Evaluate the adjoint of the propagation step:

(λ̄, Z̄ ) = PROP b0[Z , θ, τ̄ ].

Step 2̄ Calculate the adjoint of the correlation step:

L̄ = CORRELATE b(Z ′, Z̄ ),

implemented as
L̄ = Z̄Z ′

t
.
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Adjoint Simulation Algorithm

I In turn, the adjoint of the correlation step reads:

Step 3̄b Calculate:

Ūi = τ̄i
∂F−1

i (Ui ;λ
i )

∂Ui
= τ̄i

1

fi (F
−1
i (Ui ;λi );λ)

,

λ̄i
j = τ̄i

∂F−1
i (Ui ;λ

i )

∂λi
j

,

for i = 1, . . . ,N and j = 1, . . . ,M.

Step 3̄a Calculate: Z̄i = Ūiφ(Zi ), i = 1, . . . ,N.

where fi (t;λ) = ∂F (t;λ)/∂t is the p.d.f. of the default time of the
i-th reference entity and φ(x) is the standard normal p.d.f. Note that
computing the derivative ∂F−1

i (Ui ;λ
i )/∂λi

j involves differentiating
the root searching algorithm used to determine the default time τi .
However, a much better implementation is possible by means of the
so-called implicit function theorem [11].
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Payout Smoothing

I In order to apply the Pathwise Derivative method to the payout
above, the indicator functions in the premium and protection legs

Pprem(τ1, . . . , τN) =

TM∑
k=1

ckD(Tk )I(τ ≥ Tk ),

Pprot(τ1, . . . , τN) = (1− Rn)D(τ)I(τ ≤ T ),

need to be regularized.

I As seen before, one simple and practical way of doing that is to
replace the indicator functions with their smoothed counterpart, at
the price of introducing a small amount of bias in the Greek
estimators.

I For the problem at hand, as it is also generally the case, such bias can
be easily reduced to be smaller than the statistical errors that can be
obtained for any realistic number of MC iteration NMC.
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Results

Ratios of the CPU time required for the calculation of the option value, and correlation Greeks,

and the CPU time spent for the computation of the value alone, as functions of the number of

names in the basket. Symbols: Bumping (one-sided finite differences) (triangles), AAD without

binning (i.e. NB = NMC) (stars), AAD with binning (NB = 20) (empty circles) [9].
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Results

I As expected, for standard finite-difference estimators, such ratio
increases quadratically with the number of names in the basket.
Already for medium sized basket (N ' 20) the cost associated with
Bumping is over 100 times more expensive than the one of AAD.

I Nevertheless, at a closer look (see the inset) the relative cost of AAD
without binning is O(N), because of the contribution of the adjoint of
the Cholsesky decomposition.

I However, when using NB = 20 bins the cost of the adjoint Cholesky
computation is negligible and the numerical results show that all the
Correlation Greeks can be obtained with a mere 70% overhead
compared to the calculation of the value of the option.

I This results in over 2 orders of magnitude savings in computational
time for a basket of over 40 Names.
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Section 7

Case Study: Real Time Counterparty Credit Risk
Management
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Case Study: Real Time Counterparty Credit Risk Management

Counterparty Credit Risk Problem

I Credit Valuation Adjustment (CVA):

VCVA = E
[
I(τc ≤ T )D(τc )× LGD(τc )

(
NPV (τc)− C (R(τ−c ))

)+]
,

where τc is the default time of the counterparty, NPV (t) is the net
present value of the portfolio at time t, C (R(t)) is the collateral
outstanding, typically dependent on the rating R of the counterparty,
LGD(t) is the loss given default, D(t) is the discount factor, and T is
the longest deal maturity in the portfolio.

I Here for simplicity we consider the unilateral CVA, the generalization
to bilateral CVA and Debt Valuation Adjustment (DVA) or Funding
Valuation Adjustment (FVA) is straightforward.
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Counterparty Credit Risk Problem

I The expectation above is typically computed on a discrete time grid
of ‘horizon dates’ T0 < T1 < . . . < TNO

as, for instance,

VCVA '
NO∑
i=1

E
[
I(Ti−1 < τc ≤ Ti )D(Ti )

× LGD(Ti )
(
NPV (Ti )− C

(
R(T−i )

) )+]
.

I Risk manage CVA/DVA is challenging because all the trades facing
the same counterparty must be valued at the same time, typically
with Monte Carlo.
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A New Challenge: Rating Dependent Payoffs

I We are dealing expectation values of the form

V = EQ

[
P(R,X )

]
,

with ‘payout’ given by

P =

NO∑
i=1

P (Ti ,R(Ti ),X (Ti )) ,

where

P (Ti ,R(Ti ),X (Ti )) =

NR∑
r=0

P̃i (X (Ti ); r) δr ,R(Ti ).

I The Rating variable is discrete so the Payoff is not
Lipschitz-continuous.
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Case Study: Real Time Counterparty Credit Risk Management

Rating Transition

I We consider the rating transition Markov chain model of Jarrow,
Lando and Turnbull [10]:

R(Ti ) =

NR∑
r=1

I
(
Z̃R

i > Q(Ti , r)
)
,

where Z̃R
i is a standard normal variate, and Q(Ti , r) is the

quantile-threshold corresponding to the transition probability from
today’s rating to a rating r at time Ti .

I Note that the discussion below is not limited to this particular model,
and it could be applied with minor modifications to other commonly
used models describing the default time of the counterparty, and its
rating.
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Case Study: Real Time Counterparty Credit Risk Management

Singular Pathwise Derivative Estimator

I Due to the discreteness of the state space of the rating factor, the
pathwise estimator for its related sensitivities is not well defined.

I This can be easily seen by expressing the Payoff as

P
(
Ti ,Z̃

R
i ,X (Ti )

)
= P̃i (X (Ti ); 0)

+

NR∑
r=1

(
P̃i (X (Ti ); r)− P̃i (X (Ti ); r−1)

)
I
(
Z̃R

i > Q(Ti , r ; θ)
)
,

so that the singular contribution reads

∂θk
P
(
Ti , Z̃i ,X (Ti )

)
= −

NR∑
r=1

(
P̃i (X (Ti ); r)− P̃i (X (Ti ); r − 1)

)
× δ
(
Z̃R

i = Q(Ti , r ; θ)
)
∂θk

Q(Ti , r ; θ).

I This cannot be sampled with Monte Carlo.
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Case Study: Real Time Counterparty Credit Risk Management

Singular Pathwise Derivative Estimator

I The singular contribution can be integrated out using the properties
of Dirac’s delta, giving after straightforward computations,

θ̄k = −
NR∑
r=1

φ(Z ?,ZX
i , ρi )√

i φ(ZX
i , ρ

X
i )
∂θk

Q(Ti , r ; θ)

×
(
P̃i (X (Ti ); r)− P̃i (X (Ti ); r−1)

)
,

where Z ? is such that (Z ? +
∑i−1

j=1 Z
R
j )/
√
i = Q(Ti , r ; θ), and

φ(ZX
i , ρ

X
i ) is a NX -dimensional standard normal probability density

function with correlation matrix ρX
i obtained by removing the first

row and column of ρi ; here ∂θk
Q(Ti , r ; θ) is not stochastic, and can

be evaluated (e.g., using AAD) once per simulation.

I The final result is rather intuitive as it is given by the probability
weighted sum of the discontinuities in the payout.
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Case Study: Real Time Counterparty Credit Risk Management

Test Application: CVA of a portfolio of swaps on
commodity Futures

I We consider a simple one factor lognormal model for the Futures
curve of the form

dFT (t)

FT (t)
= σT exp(−β(T − t))d Wt ,

where Wt is a standard Brownian motion; FT (t) is the price at time t
of a Futures contract expiring at T ; σT and β define a simple
instantaneous volatility function that increases approaching the
contract expiry, as empirically observed for many commodities.

I As underlying portfolio, we consider a set of commodity swaps, paying
on a strip of Futures (e.g., monthly) expiries tj , j = 1, . . . ,Ne the
amount Ftj (tj )− K . The net present value for this portfolio reads

NPV (t) =
Ne∑

j=1

D(t, tj )
(
Ftj (t)− K

)
.
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Case Study: Real Time Counterparty Credit Risk Management

Forward and Backward Propagation

I The propagation (PROP) step for the Futures price reads:

FT (Ti ) = FT (Ti−1) exp
(
σi

√
∆TiZ −

1

2
σ2

i ∆Ti

)
,

where ∆Ti = Ti − Ti−1, and

σ2
i =

σ2
T

2β∆Ti
e−2βT

(
e2βTi − e2βTi−1

)
.

I The associated adjoint (PROP b) reads:

F̄T (Ti − 1) += F̄T (Ti ) exp
(
σi

√
∆TiZ −

1

2
σ2

i ∆Ti

)
,

σ̄i = F̄T (Ti )F (Ti )(
√

∆Ti Z − σi ∆Ti )

with

σ̄T + =
σ̄i√

2β∆Ti

√
e−2βT

(
e2βTi − e2βTi−1

)
.
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Case Study: Real Time Counterparty Credit Risk Management

Results

Portfolio of 5 commodity swaps over a 5 years horizon. Bumping (empty dots), AAD (full dots).

Total time: 1h 40 min (Bumping); 10 sec (AAD). From Ref.[10].
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Case Study: Real Time Counterparty Credit Risk Management

Variance Redution

I Because of the analytic integration of the singularities, the AAD risk
is typically less noisy than the one produced by Bumping.

δ VR[Q(1,1)] VR[Q(1,2)] VR[Q(1,3)]

0.1 24 16 12
0.01 245 165 125
0.001 2490 1640 1350

Table: Variance reduction (VR) on the sensitivities with respect to the
thresholds Q(1, r) (NR = 3). δ indicates the perturbation used in the
finite-differences estimators of the sensitivities.

I The variance reduction can be thought of as a further speedup factor
because it corresponds to the reduction in the computation time for a
given statistical uncertainty on the sensitivities. This diverges as the
perturbation δ tends to zero, and may be very significant even for a
fairly large value of δ.
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Application to Partial Differential Equations

Section 8

Application to Partial Differential Equations
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Application to Partial Differential Equations

Beyond Monte Carlo Applications: Partial Differential
Equations

I Option pricing problems can be often formulated in terms of the
solution of a parabolic (backward) PDE of the form

∂V

∂t
+ µ(x , t; θ)

∂V

∂x
+

1

2
σ2(x , t; θ)

∂2V

∂x2
− ν(x , t; θ)V = 0,

where
V = V (xt , t; θ) ≡ E

[
e−

∫ T
t ν(xu ,u;θ)duP(xT ; θ)

]
,

is the value of a derivative contract at time t, with payoff at expiry
P(xT ; θ). Here the risk factor xt follows a diffusion of the form

dxt = µ(xt , t; θ)dt + σ(xt , t; θ)dWt .

I As before, θ = (θ1, . . . , θNθ
) represents the vector of Nθ model

parameters the model is dependent on.
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Application to Partial Differential Equations

Numerical Solution by Finite-Difference Discretization

The solution V0(θ) = V (xt0 , t0; θ) of the
backward PDE can be found numerically
by discretization on the rectangular domain
(t, x) ∈ [t0,T ]× [xmin, xmax ]:

Vm(θ) = (V (x1, tm; θ), . . . ,V (xN , tm; θ))t .

I Given the value of the option at expiry, VM
j (θ) = P(xj ; θ), the value

of the option at time t0 can be found by iterating for
m = M − 1, . . . , 0 the matrix recursion

LB(tm, φ; θ)Vm(θ) = RB(tm, φ; θ)Vm+1(θ)

obtained with finite-difference approximations of the first and second
derivatives in the backward PDE.
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Application to Partial Differential Equations

Blueprint of a Backward PDE Solver
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Application to Partial Differential Equations

Blueprint of an AAD Backward PDE Solver

I Using the AAD rules it is easy to pin down the structure of the Adjoint PDE solver.
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Application to Partial Differential Equations

The heart of the algorithm: the tridiagonal solver

I A collection of results on the Adjoint of linear algebra operations (see M. Giles’ ‘Collected
Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation’) is
very useful when dealing with code implementing linear algebra.

I The computational cost of the näıve AAD algorithm above is O(N3). In order to reduce
the computational cost to O(N), as in the original algorithm, we need to avoid the matrix
inversion by using all the information that is available to us (including the forward sweep!).
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Application to Partial Differential Equations

The heart of the algorithm: the tridiagonal solver (cont’d)

I Only the elements on the three main diagonals of L̄m
B and R̄m

B contribute to the
sensitivities, so that only 3N multiplications are required for their computation.

I The overall computational cost of the adjoint tridiagonal solver is O(N), exactly as for the
forward counterpart and as expected from the general result on the computational
efficiency of AAD.
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Application to Partial Differential Equations

Some Results: the Black-Karasinski model for default
intensities

I To illustrate the efficiency of the AAD-PDE approach the
Black-Karasinki (BK) model for the stochastic instantaneous hazard
rate ht = exp xt , namely

d log ht = κ(t)(µ(t)− log ht)dt + σ(t)dWt .

Here, we will fix the mean reversion rate κ = 0.01 and assume µ(t)
and σ(t) to be left-continuous piecewise constant functions.

I The conditional probability of the obligor surviving up to time T is
given by

Q(ht , t,T ) = E
[

exp
[
−
∫ T

t
du hu

]∣∣∣ht , τ > t
]
.

I Any credit derivative whose payoff at time T is a function of the
hazard rate hT , such as defaultable bonds, CDS, bond options and
CDS options can be valued within the PDE approach.
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Application to Partial Differential Equations

Warming up: Defaultable Zero Bond

I As expected, the results obtained with both the AAD version of the
backward and forward PDE are consistent with the ones obtained by
bumping.

I For both the AAD version of the backward and the forward PDE
scheme the calculation of the sensitivities can be performed in about
3.3 times the cost of computing the value of the option, i.e., well
within the theoretical bound of 4.
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Application to Partial Differential Equations

Bond and CDS Options

I The computational cost of the AAD algorithm is well within the
theoretical bound of 4.

I The overall cost of computing all the sensitivities by means of AAD,
relative to the cost of a single valuation of the option, is independent
on the number of sensitivities.
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Calibration: Model Parameter and Market Parameters

I The sensitivities with respect to the internal model parameters θ are
generally of limited utility because they do not correspond directly to
financially meaningful quantities.

I The sensitivities we need for hedging are the sensitivities with respect
to the market observables M that have been used to calibrate the
model.

I It is useful to think in terms of two distinct steps:
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Calibration

I As it is customary we have used a combination of the forward and
backward PDE algorithm to bootstrap the survival probabilities and
calibrate to the CDS option prices.
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Getting the Market Parameters Sensitivities

I The adjoint of the calibration step M → θ(M) can be produced
following the general rules of AAD.

I The computational cost can be expected to be of the order of the
cost of performing the calibration algorithm a few (less than 4) times.

I This in itself is generally much better than bumping, involving
repeating the calibration algorithm as many times as sensitivities
required.

I However, we can do better thanks to ...
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Ulisse Dini and the Implicit Function Theorem
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Implicit Function Theorem

I The calibration algorithm consists of the numerical solution of a
system of equations of the form

Gi (M, θ) = 0,

with M ∈ RNM , θ ∈ RNθ and i = 1, . . . ,Nθ, where the function
Gi (M, θ) is of the form

Gi (M, θ) = Ti (M)− Vi (θ)

where Vi (θ) is the price of the i-th calibration instrument as produced
by the model we want to calibrate, and Ti (M) are the prices of the
target instruments.

I By differentiating with respect to M

∂Gi

∂Mm
+

Nθ∑
j=1

∂Gi

∂θj

∂θj

∂Mm
= 0

for m = 1, . . . ,NM .
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Implicit Function Theorem (cont’d)

I Or equivalently

∂θk

∂Mm
= −

[(
∂G

∂θ

)−1 ∂G

∂M

]
km

with [∂G/∂M]ij = ∂Gi/∂Mj .
I This relation allows the computation of the sensitivities of θ(M),

locally defined in an implicit fashion by the calibration equation, in
terms of the sensitivities of the function G . These can be computed
by implementing the corresponding adjoint function

(M̄, θ̄) = Ḡ (M, θ, Ḡ )

giving according to the general rule

M̄m =

Nθ∑
i=1

Ḡi
∂Gi

∂Mm
θ̄k =

Nθ∑
i=1

Ḡi
∂Gi

∂θk
.
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

Implicit Function Theorem (cont’d)

I The Implicit Function Theorem method is significantly more stable
and efficient than of calculating the derivatives of the implicit
functions M → θ(M) by applying AAD to the calibration step.

I This is because Gi (M, θ) = Ti (M)− Vi (θ) are explicit functions of
the model and market parameters that are easy to compute and
differentiate, e.g., using the AAD version of the combination of the
forward and backward PDE for the calculation of Vi (θ) and the AAD
version of the algorithm for the computation of Ti (M).

I Combining the implicit function theorem with AAD results in
extremely efficient risk computations.
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Application to Partial Differential Equations Calibration and Implicit Function Theorem

AAD and the Implicit Function Theorem: Results

I Combining AAD with the Implicit Function Theorem allows the computation of risk in
50% less than the cost of computing the option value, resulting in remarkable savings in
computational time.
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Conclusions

Section 9

Conclusions
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Conclusions

Conclusions

I We have shown how Adjoint Algorithmic Differentiation (AAD) can
be used to implement the Adjoint calculation of price sensitivities in a
straightforward manner and in complete generality.

I In contrast to algebraic Adjoint methods, the algorithmic approach
can be straightforwardly applied to both path dependent options and
multi asset Monte Carlo simulations. It also eliminates altogether the
need for the sometimes cumbersome analytical work required by
algebraic formulations.

I AAD can be applied to any numerical technique. In particular, it can
be used to implement efficiently and in full generality the calculation
of sensitivities of option prices computed by means of the numerical
solution of Partial Differential Equations (PDE).
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Conclusions

Conclusions

I By combining the adjoint version of the pricing algorithm, and the
Implicit Function Theorem one can avoid the necessity of repeating
multiple times the calibration algorithm or implementing the AAD
version of the calibration routine.

I This allows the calculation of all price sensitivities for an additional
computational cost that is a small multiple of the cost of computing
the P&L of the portfolio, thus typically resulting in orders of
magnitudes savings in computational time with respect to standard
finite-difference approach.
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