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1 Primal SDE

Listing 1: Primal SDE
#ifndef F_H_INCLUDED_

#define F_H_INCLUDED_

#include "std_includes.h"

template<typename AT, typename PT>
void f(AT& x, const vector<AT>& p,
const vector<vector<PT>>& dW) {
int m=dW.size(), n=dW[0].size();
AT s=0, x0=x; PT dt=1./n, t;
for (int j=0;j<m;j++) {
t=0;
for (int i=0;i<n;i++) {

x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t) *sqrt (dt) *dw[j] [i];

t+=dt;
b
s+=x; x=x0;
}

x=s/m;
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#endif

Listing 2: Primal SDE (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, char*x v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);
double x=1;
const vector<double> p(n,1);

default_random_engine generator;

normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));

for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

f(x,p,dW);
cout << "x=" << x << endl;
return O;

Listing 3: Approximate Tangent SDE

#include "std_includes.h"
#include "f.h"

template<typename T>
vector<T> driver(T& x, vector<T>& p,
const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<T> g(n+1,0);
double x0=x;
f(x,p,dW);
double h=sqrt(DBL_EPSILON) ;
double xp=x0+h;
f(xp,p,dw);
g[0]=(xp-x) /h;
for (int i=0;i<n;i++) {
xp=x0; pl[il+=h; f(xp,p,dW); gli+1]1=(xp-x)/h;
}

return g;

plil-=h;
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int main(int c, char* v[]) {
assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

}
2 First-Order AD

2.1 Tangents

Listing 4: Tangent SDE (Handwritten)

#include "std_includes.h"

template<typename T>
void f_t(T& x, T& xt,
const vector<T>& p, vector<T>& pt,
const vector<vector<double>>& dW) {
int m=dW.size(), n=dW[0].size();
T s=0, st=0, x0=x, x0t=xt; double dt=1./n, t;
for (int j=0;j<m;j++) {
t=0;
for (int i=0;i<n;i++) {
xt+=dt*sin(x*t)*pt[i]
+dt*p [i]*t*cos (x*t) *xt
+cos (x*t)*sqrt (dt)*dw[j] [1]*pt [i]
-plil*t*sin(x*t)*sqrt(dt)*dW[j] [i]*xt;
x+=dt*p[i]*sin(x*t)+p[i]l*cos (x*t)*sqrt(dt)*dW[j] [i];
t+=dt;
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}

st+=xt; s+=x;
xt=x0t; x=x0;
b

xt=st/m; x=s/m;

vector<double> driver(double& x, const vector<double>& p,

}

const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double x0=x, xt=1; vector<double> pt(n,0);
f_t(x,xt,p,pt,dW);
gl0]=xt;
for (int i=0;i<n;i++) {
x=x0; xt=0; ptl[il=1;
f_t(x,xt,p,pt,dW);
gli+1]=xt;
pt[i]1=0;
}

return g;

int main(int c, char*x v[]) {

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

Listing 5: Tangent SDE (dco/c++)

#include "std_includes.h"



3 #include "dco.hpp"
4+ typedef dco::gtls<double>::type DCO_T;

¢ #include "f.h"

s vector<double> driver(double& xv, vector<double>& pv,

9 const vector<vector<double>>& dW) {
10 int n=dW[0] .size();
1 vector<double> g(n+1,0);

12 DCO_T xO0=xv;

13 vector<DCO_T> p(n); dco::value(p)=pv;
14 DCO_T x=x0;

15 dco::derivative(x)=1;

16 f(x,p,dW);

17 gl0]=dco: :derivative(x);

18 for (int i=0;i<n;i++) {

19 x=x0;

20 dco::derivative(p[i]l)=1;
21 f(x,p,dW) H

22 gli+1]=dco: :derivative(x);
23 dco::derivative(p[i])=0;
24 }

25 return g;

26 }

27

2s int main(int c, char* v[]) {
29 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
30

31 const double x0=1;

32 vector<double> p(n,1);

33

34 default_random_engine generator;

35 normal_distribution<double> distribution(0.0,1.0);
36 vector<vector<double>> dW(m,vector<double>(n,1));
37 for (int i=0;i<m;i++)

38 for (int j=0;j<n;j++)

39 dw[i] [jl=distribution(generator);

40

a1 double x=x0;

42 vector<double> g=driver(x,p,dW);
13 cout << "dx/dx0=" << g[0] << endl;

44 for (int i=0;i<n;i++)

45 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
46 return O;

a7}



2.2 Adjoints

Listing 6: Adjoint SDE (Handwritten)

1 #include "std_includes.h"

3 template<typename T>

1+ void f_a(T& x, T& xa, const vector<T>& p, vector<T>& pa,
5 const vector<vector<double>>& dW) {

6 int m=dW.size(), n=dW[0].size();

7 stack<T> tbr_T; stack<double> tbr_double;

8 // augmented primal

9 T s=0, x0=x; double dt=1./n, t;

10 for (int j=0;j<m;j++) {

11 t=0;

12 for (int i=0;i<n;i++) {
13 tbr_T.push(x);

14 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j] [i];
15 tbr_double.push(t);

16 t+=dt;

17 }

18 s+=x; x=x0;

19 }

20 x=s/m;

21 T y=x;

22 // adjoint
23 T sa=0, x0a=0;

24 sat+=xa/m; xa=0;

25 for (int j=m-1;j>=0;j--) {

26 x0a+=xa; xa=0;

27 xat+=sa;

28 for (int i=n-1;i>=0;i--) {

29 t=tbr_double.top(); tbr_double.pop();

30 x=tbr_T.top(); tbr_T.pop();

31 palil+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW[j] [i])*xa;
32 xa=(1+dt*p[i] *t*cos (xxt) -p[i] *t*sin(x*t)*sqrt (dt) *dW[j] [i]) *xa;
33 }

34 }

35 xa+=x0a; x0a=0;

36 X=y;

37}

39 vector<double> driver(double& x, vector<double>& p,
40 const vector<vector<double>>& dwW) {

41 int n=dW[0] .size();

12 vector<double> g(n+1,0);
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double xa=1; vector<double> pa(n,0);
f_a(x,xa,p,pa,dW);

gl0]l=xa;

for (int i=0;i<n;i++) gli+1]=palil;
return g;

}

int main(int c, char*x v[]) {

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)

for (int j=0;j<n;j++)

dw[i] [jl1=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)

cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

Listing 7: Adjoint SDE (dco/c++)
#include "std_includes.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

#include "f.h"

vector<double> driver (double& xv, vector<double>& pv,

const vector<vector<double>>& dW) {

int n=dW[0].size();

vector<double> g(n+1,0);

DCO_A x0=xv;

vector<DCO_A> p(n); dco::value(p)=pv;

DCO_AM: :global_tape=DCO_AM_TAPE: :create();

DCO_AM: :global_tape->register_variable(x0);

DCO_AM: :global_tape->register_variable(p);

DCO_A x=x0;

f(x,p,dW);
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DCO_AM: :global_tape->register_output_variable(x);
dco: :derivative(x)=1;

DCO_AM: :global_tape->interpret_adjoint();

gl0]=dco: :derivative(x0) ;

for (int i=0;i<n;i++) gli+1]=dco::derivative(p[i]);
DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;

return g;

int main(int c, char*x v[]) {

3

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

2.3 Improvements

2.3.1 Vector Tangents
See LIBOR.

2.3.2 Pathwise Ajoints

Listing 8: Adjoint SDE: Pathwise Adjoints (Handwritten)

#include "std_includes.h"

enum Mode { PRIMAL, CONTEXT_FREE_JOINT_ADJOINT };

void path(Mode mode, const int n,

double& x, double& xa,
const vector<double>&% p, vector<double>& pa,
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const vector<double>& dW_j) {
double t=0, dt=1.0/n;
switch (mode) {
case PRIMAL:
for (int i=0;i<n;i++) {
x+=dt*p[i] *sin(x*t)+p[i]
t+=dt;
}
break;
case CONTEXT_FREE_JOINT_ADJO
stack<double> tbr;
// augmented primal
t=0;
for (int i=0;i<n;i++) {
tbr.push(x);
x+=dt*p[i] *sin(x*t)+p[i]

t+=dt;

}

// adjoint

t=1;

for (int i=n-1;i>=0;i--) {
t-=dt;
x=tbr.top(); tbr.pop();
palil+=(dt*sin(x*t)+cos(
xa=(1+dt*p[i] *t*cos (x*t)

}

}
}

void f_a(double& x, double& xa,

const vector<double>& p, vec
const vector<vector<double>>

int m=dW.size(), n=dW[0].size(

// augmented primal

double s=0, x0=x;

for (int j=0;j<m;j++) {
x=x0;
path(PRIMAL,n,x,xa,p,pa,dW[j
s+=X;

}

x=s/m;

double y=x;

// adjoint

double sa=0,x0a=0;

sa+=xa/m; xa=0;

for (int j=m-1;j>=0;j--) {

*xcos (x*t) *sqrt (dt)*dw_j[i];

INT:

*xcos (x*t) *sqrt (dt) *dw_j [i];

x*t)*sqrt (dt)*dW_j [1]) *xa;
—plil*t*sin(x*t)*sqrt(dt)*dW_j[i]) *xa;

tor<double>& pa,
& dw) {

)

1);

10
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}

x=x0; xa+=sa;
path (CONTEXT_FREE_JOINT_ADJOINT,n,x,xa,p,pa,dW[jl);
x0a+=xa; xa=0;

}

xat+=x0a; x0a=0;

X=y;

vector<double> driver(double& x, vector<double>& p,

3

const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double xa=1; vector<double> pa(n,0);
f_a(x,xa,p,pa,dW);
gl0]=xa;
for (int i=0;i<n;i++) gli+1]=palil;
return g;

int main(int c, charx v[]) {

}

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)

for (int j=0;j<n;j++)

dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)

cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

2.3.3 Preaccumulation

Listing 9: Adjoint SDE: Preaccumulation (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM: :type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

11



s template<typename AT, typename PT>

o void f(AT& x, const vector<AT>& p, const vector<vector<PT>>& dW) {
10 int m=dW.size(), n=dW[0] .size();

11 AT s=0, x0O=x; PT dt=1./n, t;

12 for (int j=0;j<m;j++) {

13 DCO_AM: : jacobian_preaccumulator_t jp(dco::tape(x));
14 t=0;

15 jp.start();

16 for (int i=0;i<n;i++) {

17 x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t)*sqrt (dt)*dwW[j] [i];
18 t+=dt;

19 }

20 jp.register_output (x);

21 jp-finish(Q);

22 s+=x; x=x0;

23 }

24 x=s/m;

25}

26

27 vector<double> driver(double& xv, vector<double>& pv,
28 const vector<vector<double>>& dW) {

29 int n=dW[0].size();

30 vector<double> g(n+1,0);

31 DCO_A x0=xv;

32 vector<DCO_A> p(n); dco::value(p)=pv;

33 DCO_AM: :global_tape=DCO_AM_TAPE: :create();

34 DCO_AM: :global_tape->register_variable(x0);

35 DCO_AM: :global_tape->register_variable(p);

36 DCO_A x=x0;

37 f(X,p,dW);

38 DCO_AM: :global_tape->register_output_variable(x);
39 dco::derivative(x)=1;

40 DCO_AM: :global_tape->interpret_adjoint () ;

41 gl0]=dco: :derivative(x0);

42 for (int i=0;i<n;i++) gli+1]=dco::derivative(p[il);
13 DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;

44 return g;

45 }

46

47 int main(int c, char* v[]) {

48 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

49

50 const double x0=1;

51 vector<double> p(n,1);

12
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default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

3 Second-Order AD

3.1 Tangents

Listing 10: Second-Order Tangent SDE (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;
typedef dco::gtls<DCO_T>::type DCO_TT;

#include "f.h"

vector<vector<double>> driver(

double& xv, const vector<double> &pv,
const vector<vector<double>>& dw) {
int n=pv.size();
vector<DCO_TT> p(n); dco::passive_value(p)=pv;
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[i]))=1;
for (int j=0;j<=1i;j++) {
dco: :value(dco: :derivative(p[j]))=1;
DCO_TT x=xv;
f(x,p,dW);
ddxdppl[i] [jl=dco: :derivative(dco: :derivative(x));
dco::value(dco: :derivative(p[j]))=0;
}
dco::derivative(dco: :value(p[i]))=0;

}

13
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return ddxdpp;
3

int main(int c, charx v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);

double x=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

vector<vector<double>> ddxdpp=driver(x,p,dW);
for (int i=0;i<n;i++)
for (int j=0;j<=1i;j++)
cout << "ddx/dpp[" << i << "J[" << j << "]="
<< ddxdpp[i] [j] << endl;
return O;

}
3.2 Adjoints

Listing 11: Second-Order Adjoint SDE (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::gtls<double>::type DCO_T;

typedef dco::gals<DCO_T> DCO_TAM;

typedef DCO_TAM::type DCO_TA;

typedef DCO_TAM::tape_t DCO_TAM_TAPE;

typedef DCO_TAM_TAPE::position_t DCO_TAM_TAPE_POS;

#include "f.h"

vector<vector<double>> driver(
double& xv, const vector<double> &pv,
const vector<vector<double>>& dW) {
int n=pv.size();
vector<DCO_TA> p(n); dco::passive_value(p)=pv;
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
DCO_TAM: :global_tape=DCO_TAM_TAPE: :create();
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DCO_TAM: :global_tape->register_variable(p);
DCO_TAM_TAPE_POS tpos=DCO_TAM: :global_tape->get_position();
for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[i]))=1;
DCO_TA x=xv;
f(x,p,dW);
dco::value(dco: :derivative(x))=1;
DCO_TAM: :global_tape->interpret_adjoint_and_reset_to(tpos);
for (int j=0;j<=1i;j++)
ddxdpp[i] [jl=dco: :derivative(dco: :derivative(p[jl));
for (int j=0;j<n;j++) {
dco::derivative(dco: :derivative(p[j]))=0;
dco::value(dco: :derivative(p[j]))=0;
}
dco::derivative(dco::value(p[i]))=0;
}
DCO_TAM_TAPE: :remove (DCO_TAM: :global_tape) ;
return ddxdpp;
¥

int main(int c, char* v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);

double x=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

vector<vector<double>> ddxdpp=driver (x,p,dW);
for (int i=0;i<n;i++)
for (int j=0;j<=1i;j++)
cout << "ddx/dpp[" << i << "J[" << j << "]="
<< ddxdppl[il [j] << endl;
return O;
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4 Beyond Black-Box AD

4.1 Implicit Functions
4.1.1 Tangents

Listing 12: Algorithmic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>
1+ void f_t(T& xv, T& xt, const T& pv, const T& pt, const T& eps) {
5 while (abs(xv*xv-pv)>eps) {

6 xt+=pt/ (2*%xv) - (3./4.+pv/ (4*xv*xV) ) *xt;
7 xv—=(xv*xv-pv) / (2*xV) ;

8 }

o

10

11 int main(int c, char* v[]) {
12 assert(c==2);

13 double pv=atof(v[1]), xv=1;
14 double pt=1, xt=0;

15 const double eps=le-12;

16 f_t(xv,xt,pv,pt,eps);

17 cout << "x=" << xv << endl;

18 cout << "dxdp=" << xt << endl;
19 return O;

20 }

Listing 13: Symbolic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>

1+ void f(T& x, const T& p, const T& eps) {

5 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);
6 F

s template<typename T>

o void f_st(const T& xv, T& xt, const T& pt) {
10 xt=pt/ (2*xv) ;

11 }

12

13 int main(int c, charx v[]) {

14 assert(c==2);

15 double pv=atof (v[1]), xv=1;

16 double pt=1, xt=0;

16



17 const double eps=le-12;
18 f(xv,pv,eps);
19 f_st(xv,xt,pt);

20 cout << "x=" << xv << endl;

21 cout << "dxdp=" << xt << endl;
22 return O;

23}

4.1.2 Adjoints

Listing 14: Algorithmic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>
1+ void f_a(T& xv, T& xa, const T& pv, T& pa, const T& eps) {
5 stack<T> tbr_T;

6 int i=0;

7 while (abs(xv*xv-pv)>eps) {

8 tbr_T.push(xv);

9 xv—=(xv*xv-pv) / (2*xV) ;

10 i++;

11 }

12 double y=xv;

13 for (int j=0;j<i;j++) {

14 xv=tbr_T.top(); tbr_T.pop();
15 pat=xa/(2*xv) ;

16 xa-=(3./4.+pv/ (4*xv*xv))*xa;
17 }

18 XV=y,;

1}

20

21 int main(int c, char*x v[]) {
22 assert(c==2);

23 double pv=atof(v[1]), xv=1;
24 double pa=0, xa=1;

25 const double eps=le-12;

26 f_a(xv,xa,pv,pa,eps);

27 cout << "x=" << xv << endl;

28 cout << "dxdp=" << pa << endl;
29 return O;

30 }

Listing 15: Symbolic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2
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template<typename T>
void f(T& x, const T& p,

const T& eps) {

while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

}

template<typename T>

void f_sa(const T& xv, T& xa, T& pa) {

pat=xa/(2*xv); xa=0;

3

int main(int ¢, charx*x v[]
assert(c==2);

double pv=atof(v[1]), x

double pa=0, xa=1;
const double eps=le-12;
f(xv,pv,eps);
f_sa(xv,xa,pa);

) o

v=1;

cout << "x=" << xv << endl;
cout << "dxdp=" << pa << endl;

return O;

}
4.2 Checkpointing

Listing 16: Adjoint SDE: Pathwise Adjoints with Equidistant Checkpointing

(Handwritten)

#include "std_includes.h"

enum Mode { PRIMAL, CONTEXT_FREE_JOINT_FORWARD, CONTEXT_FREE_JOINT_BACKWARD,

CONTEXT_SENSITIVE_JOINT };

template<typename T>

void steps(Mode mode, int from, int to, T& x, T &xa,
const vector<T>& p, vector<T>& pa,
const vector<double>& dW_j) {

static stack<T> tbr_T;
int n=p.size(); double
switch (mode) {

static stack<double> tbr_d;
dt=1.0/n, t=from*dt;

default: assert(false); break;
case CONTEXT_FREE_JOINT_FORWARD:

tbr_T.push(x); tbr_

d.push(t);

for (int i=from;i<to;i++) {

x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t) *sqrt(dt)*dW_j[i];

t+=dt;
}

break;
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case CONTEXT_FREE_JOINT_BACKWARD:
t=tbr_d.top(); tbr_d.pop(); x=tbr_T.top(); tbr_T.pop(Q);
case CONTEXT_SENSITIVE_JOINT:
for (int i=from;i<to;i++) {
tbr_T.push(x);
x+=dt*p[i] *sin(x*t)+p[i]l*cos (x*t) *sqrt(dt)*dW_j[i];

t+=dt;
}
double y=x;
for (int i=to-1;i>=from;i--) {
t-=dt;
x=tbr_T.top(); tbr_T.pop(Q);
palil+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW_j[i])*xa;
xa=(1+dt*p[i]l*t*cos (x*t)-p[i]l*t*sin(x*t) *sqrt (dt)*dW_j[i]) *xa;
}
X=y;

template<typename T>
void path(Mode mode, const int ncs,
T& x, T& xa, const vector<T>& p, vector<T>& pa,
const vector<double>& dW_j) {
int n=dW_j.size();
double t=0, dt=1.0/n;
switch (mode) {
default: assert(false); break;
case PRIMAL:
for (int i=0;i<n;i++) {
x+=dt*p[i]*sin(x*t)+p[i]l*cos (x*t)*sqrt (dt)*dW_j[i];
t+=dt;
}
break;
case CONTEXT_SENSITIVE_JOINT:
t=0;
for (int i=0;i<n-ncs;i+=ncs)
steps (CONTEXT_FREE_JOINT_FORWARD,i,i+ncs,x,xa,p,pa,dW_j);
steps (CONTEXT_SENSITIVE_JOINT,n-ncs,n,x,xa,p,pa,dW_j);
T y=x;
for (int i=n-2*ncs;i>=0;i-=ncs)
steps (CONTEXT_FREE_JOINT_BACKWARD, i, i+ncs,x,xa,p,pa,dW_j);
X=y;
}
}

void f_a(const int ncs, double& x, double& xa,
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const vector<double>& p, vector<double>& pa,
const vector<vector<double>>& dW) {

int m=dW.size();

// augmented primal

double s=0, x0=x;

for (int j=0;j<m;j++) {
x=x0;
path(PRIMAL,ncs,x,xa,p,pa,dW[jl);
s+=X;

}

x=s/m;

double y=x;

// adjoint

double sa=0,x0a=0;

sa+=xa/m; xa=0;

for (int j=m-1;j>=0;j--) {
x=x0; xa+=sa;
path (CONTEXT_SENSITIVE_JOINT,ncs,x,xa,p,pa,dW[jl);
x0a+=xa; xa=0;

}

xat+=x0a; x0a=0;

X=Y;

}

vector<double> driver(const int ncs, double& x, vector<double>& p,
const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double xa=1; vector<double> pa(n,0);
f_a(ncs,x,xa,p,pa,dwW);
gl0]=xa;
for (int i=0;i<n;i++) gli+i]l=palil;
return g;

3

int main(int c, char* v[]) {
assert(c==4); int m=atoi(v[1]), n=atoi(v[2]), ncs=atoi(v[3]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);
double x=x0;
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vector<double> g=driver(ncs,x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

A PDE / Explicit Scheme

Listing 17: Primal PDE / Explicit Scheme
#ifndef F_H_INCLUDED_

#define __F_H_INCLUDED_
template <typename AT, typename PT>
inline void step(const int m, const vector<PT>& p, vector<AT>& y) {
int n=y.size();
vector<AT> r(n);
AT v=p[0]*(n+1)*(n+1);
r[0]=v*(p[1]-2xy[0]+y[1]);
for (int i=1;i<n-1;i++) rlil=vx(y[i-1]1-2xy[il+y[i+1]);
r[n-1]=v*(y[n-2]-2*y[n-11+p[2]);
for (int i=0;i<n;i++) y[il+=r[i]/m;

template <typename AT, typename PT>

inline void f(const int m, const vector<PT>& p, vector<AT>& y) {
for (int j=0;j<m;j++) step(m,p,y);

}

#endif

Listing 18: Primal PDE / Explicit Scheme (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
vector<double> y(n), p={1le-3,42,0};
for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));
f(m,p,y);
cout << 0 << " " << p[1] << endl;
for (int i=0;i<n;i++)
cout << static_cast<double>(i+1)/(n+1) << " " << y[i] << endl;
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cout << 1 << " " << p[2] << endl;
return O;

}
A.1 Tangents

Listing 19: Tangent PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"

template <typename AT, typename PT>

inline void step_t(const int m,
const vector<PT>& p, const vector<PT>& p_t,
vector<AT>& y, vector<AT>& y_t)

int n=y.size();
vector<AT> r(n), r_t(n);
int ns=(n+1)*(n+1);
AT v=p[0]*ns;
r_t[0]=p_t[0]*ns*(p[1]-2xy[0]+y[1])
+vkp_t [1]-v*2+y_t [0]+v*y_t[1];
r[0]=v*x(p[1]-2*y[0]+y[1]);
for (int i=1;i<n-1;i++) {
r_t[il=p_t [0]*ns* (y[i-1]-2*y[i]+y[i+1])
+vky_t[i-1]-v*2xy_t[i]+vxy_t[i+1];
rlil=vx(y[i-1]-2*y[i]+y[i+1]);
}
r_t[n-1]=p_t [0] *ns* (y [n-2] -2xy [n-1]+p[2])
+v*y_t [n-2] -v*2xy_t [n-1]+v*p_t [2] ;
r[n-1]=vx(y[n-2]1-2*y[n-11+p[2]);
for (int i=0;i<n;i++) {
y_t[il+=r_t[i]/m;
y[il+=r[i]l/m;
}
+

template <typename AT, typename PT>
inline void f_t(const int m,
const vector<PT>& p, const vector<PT>& p_t,
vector<AT>& y, vector<AT>& y_t)
{
for (int j=0;j<m;j++) step_t(m,p,p_t,y,y_t);
}

int main(int c, char* v[]) {
cout.precision(15);
assert(c==3);
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int n=atoi(v[1]), m=atoi(v[2]);
vector<double> y(n), y_t(n);
vector<double> p={1e-3,42,0}, p_t(3,0);
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) {
y[i]l=(i+1)*log(static_cast<double>(i+2));
y_t[i]=0;
}
y_tl[jl=1;
f_t(m,p,p_t,y,y_t);
cout << "dy(n/2)/dyO[" << j << "]=" << y_t[n/2] << endl;
¥

return O;

Listing 20: Tangent PDE / Explicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

#include "f.h"

int main(int argc, char* argv([]){
assert (argc==3);
int n=atoi(argv([1]), m=atoi(argv[2]);
vector<DCO_T> y(n), p={1e-3,42,0};
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));
dco::derivative(y[j]1)=1;
f(m,p,y);
cout << "dy(n/2)/dyO[" << j << "]=" << dco::derivative(y[n/2]) << endl;
}

return O;

3
A.2 Adjoints

Listing 21: Adjoint PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"
enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename AT, typename PT>
inline void step_a(Mode mode, const int m,
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7 const vector<PT>& p, vector<PT>& p_a,
8 vector<AT>& y, vector<AT>& y_a)

o {

10 int n=y.size();

11 static stack<vector<AT>> tbr;
12 vector<AT> r(n), r_a(n,0);

13 int ns=(n+1)*(n+1); AT v=p[0]*ns;
14 switch (mode) {
15 case AUGMENTED_PRIMAL:

16 r[0]=v*(p[1]-2xy [0]+y[1]);

17 for (int i=1;i<n-1;i++)

18 rli]=vx(y[i-1]-2*y[i]l+y[i+1]);

10 r[n-1]=v*(y[n-2]-2*y[n-1]1+p[2]1);

20 tbr.push(y);

21 for (int i=0;i<n;i++) y[il+=r[i]/m;

22 break;

23 case SPLIT_ADJOINT:

24 y=tbr.top(); tbr.pop(Q);

25 for (int i=0;i<n;i++) r_alil+=y_alil/m;

26 p_al0]l+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

27 p_alil+=v*r_a[0]; y_al[0]-=v*2xr_a[0];

28 y_al1l+=v*r_al[0]; r_a[0]=0;

20 for (int i=1;i<n-1;i++) {

30 p_al0l+=ns*(y[i-1]1-2xy[i]+y[i+1])*r_a[i];
31 y_ali-1]+=v*r_alil; y_ali]-=v*2*r_al[i];
32 y_ali+1]l+=v*r_al[il; r_al[i]=0;

33 }

34 p_al0]+=ns*(y[n-2]-2*y[n-1]+p[2]) *r_a[n-1];
35 y_a[n-2]+=v*r_al[n-1]; y_aln-1]-=v*2*r_a[n-1];
36 p_al2]l+=v*r_a[n-1]; r_a[n-1]1=0;

37 break;

38 }

39 }

40
11 template <typename AT, typename PT>
42 inline void f_a(const int m,

43 const vector<PT>& p, vector<PT>& p_a,
44 vector<AT>& y, vector<AT>& y_a)
45 {

46 for (int j=0;j<m;j++) step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
a7 for (int j=0;j<m;j++) step_a(SPLIT_ADJOINT,m,p,p_a,y,y_-a);

48 }

49

50 int main(int ¢, char* v[]) {

51 cout.precision(15);

52 assert (c==3);
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int n=atoi(v[1]), m=atoi(v[2])
vector<double> y(n), y_a(n,0);

for (int i=0;i<n;i++) y[i]l=(i+1)*log(static_cast<double>(i+2));
vector<double> p={1e-3,42,0}, p_a(3,0);

y_al[n/2]=1;
f_a(m,p,p_a,y,y_a);
for (int i=0;i<n;i++)

cout << "dy(n/2)/dy0o[" << i
return O;

Listing 22: Adjoint PDE / Explicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef double DCO_BT;

’

<< "]=" << y_a[i] << endl;

typedef dco::galsm<DCO_BT> DCO_AM;

typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

#include "f.h"

int main(int ¢, char*x v[]){

assert(c==3); int n=atoi(v[1]), m=atoi(v[2]);

vector<DCO_A> yO(n), p={1e-3,42,0};

for (int i=0;i<n;i++) yO0[il=(i+1)*log(static_cast<double>(i+2));
:create();

DCO_AM_TAPE* tape=DCO_AM_TAPE:
tape->register_variable(y0);
vector<DCO_A> y=yO0;

f(m,p,y);

tape->register_output_variable(y);

dco::derivative(y[n/2])=1.;
tape->interpret_adjoint();
for(int i=0;i<n;i++)

cout << "dy(n/2)/dy0o[" << i
DCO_AM_TAPE: :remove (tape) ;
return O;

Listing 23: Adjoint PDE / Explicit Scheme with Equidistant Checkpointing

(Handwritten)

#include "std_includes.h"

#include "Eigen/Dense"
using namespace Eigen;

<< "]=" << dco::derivative(y0[i]) << endl;
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¢ enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

s template <typename AT, typename PT>
9 inline void step_a(Mode mode, const int m,

10 const vector<PT>& p, vector<PT>& p_a,
1 vector<AT>& y, vector<AT>& y_a)

12 {

13 int n=y.size();

14 static stack<vector<AT>> tbr;

15 vector<AT> r(n), r_a(n,0);

16 int ns=(n+1)*(n+1); AT v=p[0]*ns;
17 switch (mode) {
18 case PRIMAL:

19 r[0]=v*x(p[1]-2%y[0]+y[1]);

20 for (int i=1;i<n-1;i++)

21 rlil=vx(y[i-1]-2*y[i]+y[i+1]);

22 r[n-1]=v*(y[n-2]-2*y [n-1]+p[2]);

23 for (int i=0;i<n;i++) y[i]l+=r[il/m;

24 break;

25 case AUGMENTED_PRIMAL:

26 r[0]=vx(p[1]-2*y[0]+y[1]);

27 for (int i=1;i<n-1;i++)

28 r[1] =Vk (y [1_1] —Q*Y[l] +y [1+1]) 5

29 r[n-1]=v*(y[n-2]-2*y[n-1]1+p[2]);

30 tbr.push(y);

31 for (int i=0;i<n;i++) y[il+=r[il/m;

32 break;

33 case SPLIT_ADJOINT:

34 y=tbr.top(); tbr.pop();

35 for (int i=0;i<n;i++) r_al[il+=y_al[i]/m;
36 p_al0]l+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

a7 p_alil+=v*r_a[0]; y_al[0]-=v*2xr_a[0];

38 y_al1l+=v*r_a[0]; r_a[0]=0;

39 for (int i=1;i<n-1;i++) {

10 p_al0]+=ns*(y[i-1]1-2*y[il+y[i+1])*r_al[il;
a1 y_ali-1]+=vxr_ali]; y_ali]-=v*2*r_a[i];
a2 y_ali+1]+=v¥r_alil; r_al[il=0;

43 }

41 p_al0]+=ns*(y[n-2]-2*y[n-1]+p[2])*r_a[n-1];
15 y_a[n-2]+=v*r_a[n-1]; y_aln-1]-=v*2*r_a[n-1];
16 p_al2]l+=v*r_a[n-1]; r_a[n-1]1=0;

a7 break;

48 }

49 }
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template <typename AT, typename PT>
inline void f_a(const int m, const int ncs,

{

}

const vector<PT>& p, vector<PT>& p_a,
vector<AT>& y, vector<AT>& y_a)

stack<vector<AT>> cp;
for (int j=0;j<m-ncs;j+=ncs) {
cp.push(y);
for (int i=0;i<ncs;i++)
step_a(PRIMAL,m,p,p_a,y,y_a);
}
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,p_a,y,y_2a);
for (int j=0;j<m-ncs;j+=ncs) {
y=cp.top(); cp.pop();
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,p_a,y,y_a);
}

int main(int c, charx v[]) {

}

assert(c==4);
int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]);
vector<double> y(n), y_a(n,0);
for (int i=0;i<n;i++) y[il=(i+1)*log(static_cast<double>(i+2));
vector<double> p={1e-3,42,0}, p_a(3,0);
y_al[n/2]=1;
f_a(m,ncs,p,p_a,y,y_a);
for (int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a[i] << endl;
return O;

B PDE / Implicit Scheme

Listing 24: Primal PDE / Implicit Scheme

#ifndef F_H_INCLUDED_

#define __F_H_INCLUDED_

#include <Eigen/LU>
using namespace Eigen;
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// Ths of ode
template <typename T, int N=Dynamic>
inline void g(const Matrix<T,3,1>& p, const Matrix<T,N,1>& y,
Matrix<T,N,1>& r) {
int n=y.size();
for (int i=0;i<n;i++) {
r(1)=p(0)*(n+1)*(n+1);
if (i==0)
(1) *=p(1)-2xy (i) +y(i+1);
else if (i==n-1)
r(1)*=y(i-1)-2*xy(i)+p(2);
else
r(i)*=y(i-1)-2xy (i) +y(i+1);
}
}

// tangent of rThs of ode
template <typename T, int N=Dynamic>
inline void g_t(const Matrix<T,3,1>%& p, const Matrix<T,N,1>& y,
const Matrix<T,N,1>& y_t, Matrix<T,N,1>& r_t) {
int n=y.size();
for (int i=0;i<n;i++) {
r_t(i)=p(0)*(n+1)*(n+1);
if (i==0)
r_t(i)*=-2xy_t(i)+y_t(i+1);
else if (i==n-1)
r_t(i)*=y_t(i-1)-2xy_t(i);
else
r_t(i)*=y_t(i-1)-2*xy_t (L) +y_t (i+1);
}
}

// Jacobian of rhs of ode
template <typename T, int N=Dynamic>
inline void dgdy(const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {
int n=y.size();
Matrix<T,N,1> r=Matrix<T,N,1>::Zero(n), r_t=Matrix<T,N,1>::Zero(n);
for (int i=0;i<n;i++) {
Matrix<T,N,1> y_t=Matrix<T,N,1>::Zero(n);
y_t(i)=1;
g_t(p,y,y_t,r_t);
if (i>0) A(i,i-D=r_t@E-1);
A(i,i)=r_t(i);
if (i<n-1) A(i,i+1)=r_t(i+1);
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template <typename T, int N=Dynamic>
inline void dfdy(const int m, const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {

int n=y.size();
dgdy (p,y,A);

A=Matrix<T,N,N>::Identity(n,n)-A/m;

}

// residual of nls

template <typename T, int N=Dynamic>
inline void f(const int m, const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, const Matrix<T,N,1>& y_prev,

Matrix<T,N,1>& 1)
g(p,y,r); r=y-y_prev-r/m;
}

// Newton solver for nls

template <typename T, int N=Dynamic>
const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y_prev, Matrix<T,N,1>& y) {

inline void newton(const int m,

int n=y.size();
const double eps=le-12;

Matrix<T,N,N> A=Matrix<T,N,N>:

Matrix<T,N,1> r=Matrix<T,N,1>

f(m,p,y,y_prev,r);

while (r.norm()>eps) {
dfdy(m,p,y,A);
PartialPivLU<Matrix<T,N,N>>
y-=LU.solve(r);
f(m,p,y,y_prev,r);

}

}

// implicit Euler integration

template <typename T, int N=Dynamic>
inline void f(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y) {

for (int j=0;j<m;j++) {
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
}
}

#endif

{

:Zero(n,n);
:Zero(n);

LU ;
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Listing 25: Primal PDE / Implicit Scheme (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, charx v[]){
assert (c==3) ;
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p(3); p(0)=1le-4; p(1)=42; p(2)=0;

f(m,p,y);
cout << 0 << " " << p(1) << endl;
for (int i=0;i<n;i++)
cout << static_cast<double>(i+1)/(n+1) << " " << y(i) << endl;
cout << 1 << " " << p(2) << endl;
return O;

}
B.1 Tangents

Listing 26: Symbolic Tangent PDE / Implicit Scheme (Handwritten)

#include "std_includes.h"
#include "f.h"

template <typename T, int N=Dynamic>
inline void step_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_t) {
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
dfdy(m,p,y,A);
PartialPivLU<Matrix<T,N,N>> LU(A);
y_t=LU.solve(y_t);

template <typename T, int N=Dynamic>
inline void f_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_t) {
for (int j=0;j<m;j++) step_t(m,p,y,y_t);
}

int main(int c, char*x v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
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Matrix<double,Dynamic,1> y=Matrix<double,Dynamic,1>::Zero(n);
Matrix<double,3,1> p=Matrix<double,3,1>::Zero(3);
p(0)=1e-3; p(1)=42; p(2)=0;
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,Dynamic,1> y_t=Matrix<double,Dynamic,1>::Zero(n);
y_t(3)=1;
f_t(m,p,y,y_t);
cout << "dy(n/2)/dy0[" << j << "]=" << y_t(n/2) << endl;
}

return O;

Listing 27: Algorithmic Tangent PDE / Implicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

#include "f.h"

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<DCO_T,Dynamic,1> y(n);
Matrix<DCO_T,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
dco::derivative(y(j))=1;
f(m,p,y);
cout << "dy(n/2)/dy0[" << j << "]=" << dco::derivative(y(n/2)) << endl;
}
return O;

}
B.2 Adjoints

Listing 28: Algorithmic Adjoint PDE / Implicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::galsm<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;
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s #include "f.h"

9

10 int main(int c, charx v[]){

11 assert(c==3);

12 int n=atoi(v[1]), m=atoi(v[2]);

13 Matrix<DCO_A,Dynamic,1> yO=Matrix<DCO_A,Dynamic,1>::Zero(n);
14 for (int i=0;i<n;i++) y0(i)=(i+1)*log(static_cast<double>(i+2));
15 Matrix<DCO_A,3,1> p=Matrix<DCO_A,3,1>::Zero(3);

16 p(0)=1e-3; p(1)=42; p(2)=0;

17 DCO_AM_TAPE* tape=DCO_AM_TAPE: :create();

18 for(int i=0;i<n;i++) tape->register_variable(y0(i));

19 Matrix<DCO_A,Dynamic,1> y=y0;

20 f(m,p,y);

21 for(int i=0;i<n;i++) tape->register_output_variable(y(i));

22 dco::derivative(y(n/2))=1.;

23 tape->interpret_adjoint();

24 for(int i=0;i<n;i++)

25 cout << "dy(n/2)/dyO[" << i << "]=" << dco::derivative(y0(i)) << endl;
26 DCO_AM_TAPE: :remove (tape) ;

27 return O;

28 }

Listing 29: Algorithmic Adjoint PDE with Symbolic Adjoint Nonlinear Euler
System (Handwritten)

1 #include "std_includes.h"
2 #include "f.h"

4+ enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

¢ template <typename T, int N=Dynamic>
7 inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,

s Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
9 static stack<Matrix<T,N,1>> psols;
10 int n=y.size();

11 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
12 switch (mode) {
13 case AUGMENTED_PRIMAL: {

14 Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);
15 y_prev=y;

16 newton(m,p,y_prev,y);

17 psols.push(y);

18 break;

19 }

20 case SPLIT_ADJOINT: {

21 y=psols.top(); psols.pop();

22 dfdy(m,p,y,A);
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PartialPivLU<Matrix<T,N,N>> LU(A.transpose());
y_a=LU.solve(y_a);
break;

(-

template <typename T, int N=Dynamic>
inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_a) {
for (int j=0;j<m;j++)
step_a(AUGMENTED_PRIMAL,m,p,y,y_a);
for (int j=0;j<m;j++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
}

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,p,y,y_a);
for(int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

3

Listing 30: Symbolic Adjoint PDE / Implicit Scheme with Equidistant Check-
pointing (Handwritten)

#include "std_includes.h"

#include "f.h"

enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename T, int N=Dynamic>
inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> psols;
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
switch (mode) {
case PRIMAL: {
Matrix<T,N,1> y_prev=y;
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newton(m,p,y_prev,y);
break;

}

case AUGMENTED_PRIMAL: {
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
psols.push(y);
break;

}

case SPLIT_ADJOINT: {
y=psols.top(); psols.pop();
dfdy (m,p,y,A);
PartialPivLU<Matrix<T,N,N>> LU(A.transpose());
y_a=-LU.solve(-y_a);
break;

template <typename T, int N=Dynamic>
inline void f_a(const int m, const int ncs, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> cp;
for (int j=0;j<m-ncs;j+=ncs) {
cp.push(y);
for (int i=0;i<ncs;i++)
step_a(PRIMAL,m,p,y,y_a);
}
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
for (int j=0;j<m-ncs;j+=ncs) {
y=cp.top(); cp.pop();
for (int i=0;i<ncs;i++)
step_a (AUGMENTED_PRIMAL,m,p,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
}
}

int main(int c, char* v[]){
assert(c==4);
int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]); assert(m)ncs==0);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
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Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,ncs,p,y,y_a);
for(int i=0;i<n;i++)

cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

Listing 31: Symbolic Adjoint PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"
#include "f.h"

enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename T, int N=Dynamic>
inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> psols;
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
switch (mode) {
case AUGMENTED_PRIMAL: {
Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);
y-prevsy;
newton(m,p,y_prev,y);
psols.push(y);
break;
}
case SPLIT_ADJOINT: {
y=psols.top(); psols.popQ);
dgdy(p,y,A);
y_a=y_a+A.transpose () *y_a/m;
break;

-

template <typename T, int N=Dynamic>
inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>%& y_a) {
for (int j=0;j<m;j++)
step_a (AUGMENTED_PRIMAL,m,p,y,y_a);
for (int j=0;j<m;j++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
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int main(int ¢, char*x v[]){
assert (c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<doub1e,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,p,y,y_a);
for(int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

¥
C LIBOR

Listing 32: Primal LIBOR

#include "std_includes.h"

const int p=10;
const int m=40;
const int n=m+40;
const int no=15;

const double delta=0.25;

const vector<int> maturities({4,4,4,8,8,8,20,20,20,28,28,28,40,40,40});

const vector<double> swaprates({.045,.05,.055,.045,.05,.055,.045, .05,
.055,.045, .05, .055,.045, .05, .055}) ;

const vector<double> sigma(n,0.2);

template <typename T>
inline void path_calc(
const int path,
vector<T>& L,
const vector<vector<double>>& Z
) {
for(int j=0;j<m;j++) {
double auxl=sqrt(delta)*Z[path] [j];
T S=0.0;
for (int i=j+1;i<n;i++) {
double aux2=deltax*sigmali-j-1];
S+=(aux2*L[i])/(1.0+deltaxL[i]);
L[i]=L[i]*exp(aux2*S+sigmal[i-j-1]*(aux1-0.5*%aux2));
}
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template <typename T>

inline void portfolio( const vector<T>& L, T& P ) {

vector<T> B(n),S(n);

T b=1.0;

T s=0.0;

for (int j=m;j<n;j++) {

b=b/(1.0+delta*L[j]); B[jl=b;

s=s+delta*b; S[jl=s;

¥

P=0;

for (int i=0;i<no;i++){
int j=maturities[i]+m-1;

T swapval=B[j]+swaprates[i]*S[j]1-1.0;
if (swapval<0) P+=-100.0*swapval;

}

for (int i=0;i<m;i++) P=P/(1.0+deltaxL[i]);

template<typename T>

inline void f(const vector<T>&% L, T& P, const

T Ps=0;

for (int j=0;j<p;j++) {
vector<T> Lc(L);
path_calc(j,Lc,Z);
portfolio(Lc,P);
Ps+=P;

}

P=Ps/p;

}

vector<vector<double>>& Z) {

Listing 33: Primal LIBOR, (Driver)

#include "std_includes.h"
#include "f.h"

int main() {

vector<double> L(n,0.05); double P=0;

srand(0); default_random_engine generator (0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m));

for (int j=0; j<p;j++)
for (int i=0;i<m;i++)

Z[j]1[i]=0.3+distribution(generator) ;

£(L,P,2);
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cout << "P=" << P << endl;
return O;

}
C.1 First-Order AD
C.1.1 Tangents

Listing 34: Tangent LIBOR (Handwritten)

#include "std_includes.h"
#include "f.h"

template <typename T>

inline void path_calc_t(
const int path,
vector<T>& L,
vector<T>& L_t,

const vector<vector<double>>& Z

) o
for(int j=0;j<m;j++) {

double auxl=sqrt(delta)*Z[path]l[j];

T S_t=0.0; T S=0.0;
for (int i=j+1;i<n;i++) {

double aux2=delta*sigmali-j-1];

S_t+=(aux2/(1+deltaxL[i])-delta*aux2*L[i]
/((1+delta*L[i])*(1+deltaxL[1])))*L_t[i];

S+=(aux2*L[i])/(1.0+deltaxL[i]);

// L[i]=L[%i]*exp (aux2*S+sigma[i-j-1]* (auzl1-0.5*aux2));

T t1_t=aux2*exp(aux2*S+sigmali-j-1]*(auxl-0.5%aux2))*S_t;

T tl=exp(aux2*S+sigmali-j-1]*(aux1-0.5%aux2));

L_t[il=L_t[il*t1+L[i]*t1_t;

L[i]=L[il*t1;

template <typename T>
inline void portfolio_t(

const vector<T>& L, const vector<T>& L_t, T& P, T& P_t) {
vector<T> B(n),B_t(n),S(n),S_t(n);

T b_t=0.0; T b=1.0;
T s_t=0.0; T s=0.0;
for (int j=m;j<n;j++) {

b_t=b_t/(1.0+delta*L[j])-delta*b*L_t[j]
/((1.0+deltaxL[j]1)*(1.0+delta*L[j]));

b=b/(1.0+delta*L[j]);
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38 B_t [J] =b_t;

39 B[jl=b;

40 s_t=s_t+deltaxb_t;

41 s=s+deltaxb;

42 S_t [j]=S_t;

43 S[j]=s;

44 }

45 P_t=0; P=0;

16 for (int i=0;i<no;i++){

a7 int j=maturities[i]+m-1;

18 T swapval_t=B_t[j]l+swaprates[il*S_t[j];
49 T swapval=B[j]l+swaprates[i]l*S[j]1-1.0;
50 if (swapval<0) {

51 P_t+=-100.0*swapval_t;

52 P+=-100.0*swapval;

53 }

54 }

55 for (int i=0;i<m;i++) {

56 P_t=P_t/(1.0+delta*L[i])-delta*P*L_t[i]
57 /((1.0+delta*L[i])*(1.0+delta*L[i]));
58 P=P/(1.0+delta*L[i]);

59 }

60 }

61
62 template<typename T>
63 inline void f(const vector<T>& L, const vector<T>& L_t,

64 T& P, T& P_t, const vector<vector<double>>& Z) {
65 T Ps_t=0;

66 T Ps=0;

67 for (int j=0;j<p;j++) {

68 vector<T> Lc_t(L_t);

69 vector<T> Lc(L);

70 path_calc_t(j,Lc,Lec_t,2);
71 portfolio_t(Lc,Lc_t,P,P_t);
72 Ps_t+=P_t; Ps+=P;

73 }

74 P_t=Ps_t/p; P=Ps/p;

75 }

76

7T

7s int main() {

70 vector<double> L(n,0.05); double P=0;
80 vector<double> L_t(n,0); double P_t=0;

81 srand(0) ; default_random_engine generator(0);
82 normal_distribution<double> distribution(0.0,1.0);
83 vector<vector<double>> Z(p,vector<double>(m)) ;
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25

for (int k=0;k<n;k++) {

gene

rator.seed(0);

for (int j=0;j<p;j++)

for (int i=0;i<m;i++)
Z[j1[i]=0.3+distribution(generator);
for (int i=0;i<n;i++) { L[i]=0.05; L_t[i]=0.0; }

L_t[
£(L,

cout << "dPAL[" << k << "]=" << P_t << endl;

}

return

#include
#include

#include

typedef dco::gtls<double>::type DCO_T;

int main

vector<DCO_T> L(n,0.05); DCO_T P=0;

srand(0); default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;

k]=1.0;
L_t,P,P_t,Z);

0;

Listing 35: Tangent LIBOR (dco/c++)

"std_includes.

llf .hll

"dco.hpp"

O {

hll

for (int j=0; j<p;j++)
for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);
vector<double> dPdL(n,0);
for (int i=0;i<n;i++) {
dco: :derivative(L[i])=1;

f£(L,

dco::derivative(L[i])=0;
dPdL[i]=dco: :derivative(P);

}

for (int i=0;i<n;i++)
cout << "dPAL[" << i << "]=" << dPdL[i] << endl;

return

#include
#include

#include

P,Z);

0;

Listing 36: Vector Tangent LIBOR, (dco/c++)
'hll

"std_includes
llf .hll

"dco.hpp"
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typedef dco::gtlv<double,n>::type DCO_T;

int main() {

3

vector<DCO_T> L(n,0.05); DCO_T P=0;
srand(0); default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)

for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);

for (int i=0;i<n;i++) dco::derivative(L[i]) [i]=1;
f(L,P,Z);
vector<double> dPdL(n,0);
for (int i=0;i<n;i++) dPdL[i]=dco::derivative(P) [i];
for (int i=0;i<n;i++)

cout << "dPAL[" << i << "]=" << dPdL[i] << endl;
return O;

C.1.2 Adjoints

Listing 37: Adjoint LIBOR (Handwritten)

#include "f.h"

enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

stack<double> tbr_d;
stack<int> tbr_i;
stack<int> tbr_f;

template <typename T>
void a_path_calc(

)

Mode mode,
vector<T>& L,
vector<T>& a_L,
const vector<double>& Z
{
double aux1=0,aux2=0;
T S=0, a_S=0;
switch (mode) {
case AUGMENTED_PRIMAL:
for(int j=0;j<m;j++) {
tbr_d.push(auxl);
auxl=sqrt(delta)*Z[j];
tbr_d.push(S);
S=0;
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25 for (int i=j+1;i<n;i++) {

26 tbr_d.push(aux2);

27 aux2=delta*sigmal[i-j-1];

28 tbr_d.push(S);

20 S+=(aux2*L[i])/(1.0+delta*xL[i]);

30 tbr_d.push(L[i]);

31 L[i]=L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5%aux2));
32 }

34 tbr_d.push(auxl);

35 tbr_d.push(aux2);

36 tbr_d.push(S);

37 break;

38 case SPLIT_ADJOINT:

39 a_S=O;

10 S=tbr_d.top(); tbr_d.pop();

a aux2=tbr_d.top(); tbr_d.pop(Q);

42 auxl=tbr_d.top(); tbr_d.pop();

143 for(int j=m-1;j>=0;j--) {

44 for (int i=n-1;i>=j+1;i--) {

15 L[il=tbr_d.top(); tbr_d.pop();

46 a_S+=aux2+L[i] *exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2))*a_L[i];
a7 a_L[i]=exp(aux2*S+sigma[i-j-1]*(auxl-0.5%aux2))*a_L[i];
as S=tbr_d.top(); tbr_d.pop(Q);

49 a_L[i]+=(aux2/(1+L[i]*delta)-delta*aux2*L[i]
50 /((1+L[i]*delta) * (1+L[i]*delta)))*a_S;
51 aux2=tbr_d.top(); tbr_d.pop(Q);

52 }

53 a_S=0;

54 S=tbr_d.top(); tbr_d.popQ;

55 auxl=tbr_d.top(); tbr_d.popQ;

56 }

57 break;

58 }

59 }

61 template <typename T>
62 void a_portfolio(

63 Mode mode,

64 const vector<T>& L,
65 vector<T>& a_L,

66 T& P,

67 T& a_P

es ) {

69 vector<T> B(n,0),S(n,0);
70 T swapval=0,b=0,s=0;
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72

73

74
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77

78

79
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98

99

100

101

102

T a_swapval=0,a_b=0,a_s=0;
vector<T> a_B(n,0),a_S(n,0);
switch (mode) {
case AUGMENTED_PRIMAL:
b=1.0;
s=0.0;
for (int j=m;j<n;j++) {
tbr_d.push(b);
b=b/(1.0+delta*L[j]);
B[jl=b;
s=s+deltaxb;
Sljl=s;
}
P=0;
for (int i=0;i<no;i++){
int j=maturities[i]+m-1;
tbr_i.push(j);
swapval=B[j]+swaprates[i
if (swapval<0) {
P+=-100.0*swapval;
tbr_f.push(1);
} else tbr_f.push(0);
}
for (int i=0;i<m;i++) {
tbr_d.push(P);
P=P/(1.0+deltaxL[i]);
}
tbr_d.push(b);
break;
case SPLIT_ADJOINT:
b=tbr_d.top(); tbr_d.pop()
for (int i=m-1;i>=0;i--) {
P=tbr_d.top(); tbr_d.pop
a_L[i]+=-P*a_Px*delta/((1
a_P=a_P/(1.0+deltaxL[i])
}

for (int i=no-1;i>=0;i--)

if (tbr_f.top()) a_swapval+=-100.0%*a_P;

tbr_f.popQ);
int j=tbr_i.top(); tbr_i
a_B[jl+=a_swapval;
a_S[jl+=swaprates[i]*a_s
}
a_P=0.0;
for (int j=n-1;j>=m;j--) {
a_s+=a_S[jl; a_S[j1=0;

1xS[j1-1.0;

’

OF

.0+deltaxL[i])*(1.0+delta*L[i]));

’

{

.popQ);

wapval; a_swapval=0.0;
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129

a_b+=deltaxa_s;
a_b+=a_B[jl; a_B[j]=0;
b=tbr_d.top(); tbr_d.pop();
a_L[jl+=-deltax*b*a_b/((1.0+deltaxL[j])*(1.0+delta*L[j]));
a_b=a_b/(1.0+delta*L[jl);

}

a_b=0.0;

a_s=0.0;

break;

int main() {
vector<double> Z(n,0),L(n,0),a_L(n,0),Li(n,0.05),a_Li(n,0);
double P=0,a_P=0;
default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);

for (int j=0;j<p;j++) {
for (int i=0;i<m;i++)
Z[i]=0.3+distribution(generator);
for (int i=0;i<n;i++) L[i]l=Lil[il;
a_path_calc(AUGMENTED_PRIMAL,L,a_L,Z);
a_portfolio(AUGMENTED_PRIMAL,L,a_L,P,a_P);
a_P=1.0/p;
a_portfolio(SPLIT_ADJOINT,L,a_L,P,a_P);
a_path_calc(SPLIT_ADJOINT,L,a_L,Z);
for (int i=0;i<n;i++) { a_Li[il+=a_L[i]; a_L[i]=0; }
}
for (int i=0;i<n;i++)
cout << "dPAL[" << i << "]=" << a_Li[i] << endl;
return O;

}

Listing 38: Adjoint LIBOR (dco/c++)
#include "std_includes.h"
#include "f.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;

typedef typename DCO_AM::type DCO_A;

typedef typename DCO_AM::tape_t DCO_AM_TAPE;

int main() {

vector<DCO_A> L(n,0.05); DCO_A P=0;
srand(0); default_random_engine generator(0);
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normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)

for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);

DCO_AM: :global_tape=DCO_AM_TAPE: :create();
DCO_AM: :global_tape->register_variable(L);
£(L,P,2);
DCO_AM: :global_tape->register_output_variable(P);
dco: :derivative(P)=1;
DCO_AM: :global_tape->interpret_adjoint () ;
vector<double> dPdL(dco: :derivative(L));
cerr << dco::size_of (DCO_AM: :global_tape) << "B" << endl;
DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;
for(int i=0;i<n;i++)

cout << "dPAL[" << i << "]=" << dPdL[i] << endl;
return O;

}
C.2 Second-Order AD
C.2.1 Tangents

Listing 39: Second-Order Tangent LIBOR (dco/c++)

#include "std_includes.h"
#include "f.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;
typedef dco::gtls<DCO_T>::type DCO_TT;

int main() {
vector<DCO_TT> L(n,0.05); DCO_TT P=0;
srand(0) ; default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)
for (int i=0;i<m;i++)
Z[j1[i]=0.3+distribution(generator);
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco: :value(dco: :derivative (L[i]))=1;
for (int j=0;j<=i;j++) {
dco::derivative(dco: :value(L[j]l))=1;
£f(L,P,2);
ddPdLL[i] [j1=ddPdLL[j] [i]=dco: :derivative(dco: :derivative(P));
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dco::derivative(dco: :value(L[j]))=0;
}
dco: :value(dco: :derivative(L[i]))=0;
}
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)

cout << "ddP/dL[" << i << "]JdL[" << j << "= << ddeLL[i][j] << endl;
return O;

}
C.2.2 Adjoints

Listing 40: Second-Order Adjoint LIBOR (dco/c++)

#include "std_includes.h"
#include "f.h"

#include "dco.hpp"

typedef dco::gtls<double>::type DCO_T;
typedef dco::gals<DCO_T> DCO_TAM;
typedef DCO_TAM::type DCO_TA;

typedef DCO_TAM: :tape_t DCO_TAM_TAPE;

int main() {

11
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vector<DCO_TA> L(n,0.05); DCO_TA P=0;
srand(0) ; default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m));
for (int j=0; j<p;j++)
for (int i=0;i<m;i++)
Z[j1[1]=0.3+distribution(generator) ;
DCO_TAM: :global_tape=DCO_TAM_TAPE: :create();
DCO_TAM: :global_tape->register_variable(L);
DCO_TAM_TAPE: :position_t tpos=DCO_TAM: :global_tape->get_position();
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for(int j=0;j<n;j++) {
dco::derivative(dco::value(L[j]))=1;
£f(L,P,Z);
DCO_TAM: :global_tape->register_output_variable(P);
dco::value(dco: :derivative(P))=1;
DCO_TAM: :global_tape->interpret_adjoint_to(tpos);
for(int i=0;i<n;i++) {
ddPdLL[i] [jl=dco: :derivative(dco: :derivative(L[i]));
dco::derivative(L[i])=0;
}
dco::derivative(dco: :value(L[j]))=0;
DCO_TAM: :global_tape->reset_to(tpos) ;
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}

DCO_TAM_TAPE: :remove (DCO_TAM: :

for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
cout << "ddP/dL[" << i <<
return O;

}
D Product Reduction

D.1 First-Order AD
D.1.1 Tangents

Listing 41: Tangent Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>

void f_t(const vector<T>& x, const vector<T>& x_t, T& y, T& y_t) {

assert(x.size()>0);
y_t=x_t[0]; y=x[0];

for (size_t i=1;i<x.size();i++) { y_t=y_t*x[i]+y*x_t[i]; y*=x[i]; }

}

void driver(vector<double>& x, double &y, vector<double>& g) {

global_tape) ;

"JdL[" << j << "]=" << ddPdLL[i] [j] << endl;

vector<double> x_t(x.size(),0);
for (size_t i=0;i<x.size();i++) {

x_t[il=1;
f_t(x,x_t,y,glil);
x_t[i]=0;
}
}

int main(int c, char*x v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);
vector<double> x(n), g(n); double y;
for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

driver(x,y,g);

cout << y << endl;

for (int i=0;i<n;i++) cout <<
return O;

}
D.1.2 Adjoints

gli] << endl;
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Listing 42: Adjoint Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>

void f_a(const vector<T>& x, vector<T>& x_a, T& y, T& y_a) {

assert(x.size()>0);
stack<T> tbr;
y=x[0];

for (size_t i=1;i<x.size();i++) { tbr.push(y); y*=x[i]; }

double ys=y;

for (size_t i=x.size()-1;i>0;i—-) {
y=tbr.top(); tbr.pop(); x_alil+=y*y_a; y_a=x[il*y_a;

}
x_al0l=y_a; y_a=0;
y=ys;

}

void driver(vector<double>& x, double &y, vector<double>& g) {

double y_a=1;
f_a(x,g,y,y_a);
}

int main(int c, char*x v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);
vector<double> x(n), g(n); double y;
for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

driver(x,y,g);
cout << y << endl;

for (int i=0;i<n;i++) cout << g[i] << endl;

return O;

}
D.2 Second-Order AD
D.2.1 Tangents

Listing 43: Second-Order Tangent Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>
void f_tt(
const vector<T>& x,
const vector<T>& x_t,
const vector<T>& xt,
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9 const vector<T>& xt_t,

10 T& Y,

11 T& y_t,

12 T& yt,

13 T& yt_t

) {

15 assert(x.size()>0);

16 yt_t=xt_t [0];
17 yt=xt[0];
18 y_t=x_t[0];

19 y=x[0];

20 for (size_t i=1;i<x.size();i++) {

21 yt_t=yt_t*x[il+yt*x_t[i]+y_t*xt [i]+y*xt_t[i];
22 yt=yt*x [i]+y*xt[1i];

23 y_t=y_t*x[il+y*x_t[i];

24 y*x=x[1i];

25 }

26}

27
2s void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& H)
20 vector<double> x_t(x.size(),0);

30 vector<double> xt(x.size(),0);

31 vector<double> xt_t(x.size(),0);

32 double yt, y_t;

33 for (size_t i=0;i<x.size();i++) {

34 xt[i]l=1;

35 for (size_t j=0;j<x.size();j++) {

36 x_t [J] =1;

37 f_tt(x,x_t,xt,xt_t,y,y_t,yt,H[i1[j1);

38 x_t[j1=0;

39 }

40 g[l] =yt;

41 xt[1]=0;

42 }

a3}

44

45 int main(int c, char*x v[]) {

16 assert(c==2); int n=atoi(v[1]); assert(n>0);
a7 vector<double> x(n), g(n);

48 double y;

19 vector<vector<double>> H(n,vector<double>(n));
50 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));
51 driver(x,y,g,H);

52 cout << y << endl;

53 for (int i=0;i<n;i++) cout << g[i] << endl;
54 for (int i=0;i<n;i++) {
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for (int j=0;j<n;j++) cout << H[i][j] << " ";
cout << endl;

}

return O;

}
D.2.2 Adjoints

Listing 44: Second-Order Adjoint Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>
void f_a_t(
const vector<T>& x,
const vector<T>& x_t,
vector<T>& x_a,
vector<T>& x_a_t,
T& y,
T& y_t,
T& y_a,
T& y_a_t
) A
assert(x.size()>0);
stack<T> tbr_t;
stack<T> tbr;
y_t=x_t[0];
y=x[0];
for (size_t i=1;i<x.size();i++) {
tbr_t.push(y_t);
tbr.push(y);
y_t=y_t*x[i]+y*x_t[i];
y*=x[1i];
}
double ys_t=y_t;
double ys=y;
for (size_t i=x.size()-1;i>0;i--) {
y_t=tbr_t.top(); tbr_t.pop();
y=tbr.top(); tbr.pop(Q);
x_a_t[i]l+=y_t*xy_at+ty*y_a_t;
x_al[il+=y*y_a;
y_a_t=x_t[il*y_a+x[il*y_a_t;
y_a=x[il*y_a;
}
x_a_t[0]=y_a_t;
x_al0l=y_a;
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y_a_t=0;
y_a=0;
y_t=ys_t;
y=ys;

}

void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& h)

int n=x.size();

for (int i=0;i<n;i++) {
vector<double> x_t(n,0), x_a(n,0);
x_t[il=1;
double y_a=1,y_a_t=0;
f_a_t(x,x_t,x_a,h[i],y,glil,y_a,y_a_t);

}

}

int main(int c, char* v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);

vector<double> x(n), g(n);

double y;

vector<vector<double>> H(n,vector<double>(n));

for (int i=0;i<n;i++) x[il=cos(static_cast<double>(i));

driver(x,y,g,H);

cout << y << endl;

for (int i=0;i<n;i++) cout << g[i] << endl;

for (int i=0;i<n;i++) {
for (int j=0;j<n;j++) cout << H[i][j] << " ";
cout << endl;

}

return O;

}
E Black Scholes PDE (Explicit Time Stepping)

E.1 First-Order AD
E.1.1 Tangents

Listing 45: Tangent Black Scholes PDE (Explicit Time Stepping; dco/c++)

# include "std_includes.h"
# include "f.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

typedef Matrix<DCO_T,Dynamic,1> DCO_VT;
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typedef Matrix<double,Dynamic,1> VT;

VT driver(const VT& u, double e, double r, double sigma, int nt) {
int nx=u.size()+1;
VT g(nx+2);
DCO_VT u_(nx-1);
DCO_T e_=e, r_=r, sigma_=sigma;
// Delta
for (int i=0;i<nx-1;i++) {
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco::derivative(u_[i])=1;
f(u_,e_,r_,sigma_,nt);
glil=dco: :derivative(u_[(nx-1)/2]);
}
// 222
for (int j=0;j<nx-1;j++) u_[jl=ulj];
dco: :derivative(e_)=1;
f(u_,e_,r_,sigma_,nt);
glnx-1]=dco: :derivative(u_[(nx-1)/2]);
dco: :derivative(e_)=0;
// Rho
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco::derivative(r_)=1;
f(u_,e_,r_,sigma_,nt);
glnx]l=dco: :derivative (u_[(nx-1)/21);
dco: :derivative(r_)=0;
// Vega
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco: :derivative(sigma_)=1;
f(u_,e_,r_,sigma_,nt);
glnx+1]=dco: :derivative(u_[(nx-1)/2]);
return g;

3

int main(int c, char* v[]) {
assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);
const double e=0.5, r=0.03, sigma=0.5;
assert (nt>sigma*sigma*nx*nx) ;
assert (nt>(r*r)/(sigma*sigma)) ;
VT u(nx-1); double u0=0;
for (int i=0;i<nx-1;i++) { uO=uO+1./nx; ulil=max(u0-e,0.); }
VT greeks=driver(u,e,r,sigma,nt);
for (int i=0;i<nx-1;i++)
cout << "dVAuO[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;
cout << "dVde=" << greeks[nx-1] << endl;
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cout << "dVdr=" << greeks[nx] << endl;
cout << "dVdsigma=" << greeks[nx+1] << endl;
return O;

}
E.1.2 Adjoints

Listing 46: Adjoint Black Scholes PDE (Explicit Time Stepping; dco/c++)
# include "std_includes.h"
# include "f.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

typedef Matrix<DCO_A,Dynamic,1> DCO_VT;
typedef Matrix<double,Dynamic,1> VT;

VT driver(const VT& u, double e, double r, double sigma, int nt) {
int nx=u.size()+1;
VT g(nx+2);
DCO_VT u0_(nx-1);
for (int j=0;j<nx-1;j++) uw0_[jl=uljl;
DCO_A e_=e, r_=r, sigma_=sigma;
DCO_AM: :global_tape=DCO_AM_TAPE: :create();
for (int j=0;j<nx-1;j++)

DCO_AM: :global_tape->register_variable(u0_[j]);
DCO_AM: :global_tape->register_variable(e_);
DCO_AM: :global_tape->register_variable(r_);
DCO_AM: :global_tape->register_variable(sigma_);
DCO_VT u_=ul_;
f(u_,e_,r_,sigma_,nt);
for (int j=0;j<nx-1;j++)

DCO_AM: :global_tape->register_output_variable(u_[j]);
dco: :derivative(u_[(nx-1)/2])=1;
DCO_AM: :global_tape->interpret_adjoint () ;
// Delta
for (int j=0;j<nx-1;j++)

gljl=dco: :derivative(u0_[j1);

// 222

glnx-1]=dco: :derivative(e_);
// Rho
glnx]=dco::derivative(r_);
// Vega

glnx+1]=dco: :derivative(sigma_) ;
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39 return g;

w0 }

41

42 int main(int c, char* v[]) {

43 assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);

44 const double e=0.5, r=0.03, sigma=0.5;

45 assert (nt>sigma*sigma*nx*nx) ;

46 assert (nt>(r*r)/(sigma*sigma)) ;

a7 VT u(nx-1); double u0=0;

48 for (int i=0;i<nx-1;i++) { uO=uO+1./nx; ul[il=max(ul0-e,0.); }
49 VT greeks=driver(u,e,r,sigma,nt);

50 for (int i=0;i<nx-1;i++)

51 cout << "dVduO[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;
52 cout << "dVde=" << greeks[nx-1] << endl;

53 cout << "dVdr=" << greeks[nx] << endl;

54 cout << "dVdsigma=" << greeks[nx+1] << endl;

55 return O;

s6 )
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