
Algorithmic Differentiation (AD)
Sample Code Collection∗

Uwe Naumann

Computer Science, RWTH Aachen University, Germany
Email: naumann@stce.rwth-aachen.de

Contents

1 Primal SDE 2

2 First-Order AD 4
2.1 Tangents . 4
2.2 Adjoints . 7
2.3 Improvements . 9

2.3.1 Vector Tangents . 9
2.3.2 Pathwise Ajoints . 9
2.3.3 Preaccumulation . 11

3 Second-Order AD 13
3.1 Tangents . 13
3.2 Adjoints . 14

4 Beyond Black-Box AD 16
4.1 Implicit Functions . 16

4.1.1 Tangents . 16
4.1.2 Adjoints . 17

4.2 Checkpointing . 18

A PDE / Explicit Scheme 21
A.1 Tangents . 22
A.2 Adjoints . 23

B PDE / Implicit Scheme 27
B.1 Tangents . 30
B.2 Adjoints . 31

∗... for use in Risk Training Masterclass, London, 21-22 March 2018.

1

C LIBOR 36
C.1 First-Order AD . 38

C.1.1 Tangents . 38
C.1.2 Adjoints . 41

C.2 Second-Order AD . 45
C.2.1 Tangents . 45
C.2.2 Adjoints . 46

D Product Reduction 47
D.1 First-Order AD . 47

D.1.1 Tangents . 47
D.1.2 Adjoints . 47

D.2 Second-Order AD . 48
D.2.1 Tangents . 48
D.2.2 Adjoints . 50

E Black Scholes PDE (Explicit Time Stepping) 51
E.1 First-Order AD . 51

E.1.1 Tangents . 51
E.1.2 Adjoints . 53

1 Primal SDE

Listing 1: Primal SDE

1 #ifndef __F_H_INCLUDED_

2 #define __F_H_INCLUDED_

3

4 #include "std_includes.h"

5

6 template<typename AT, typename PT>

7 void f(AT& x, const vector<AT>& p,

8 const vector<vector<PT>>& dW) {

9 int m=dW.size(), n=dW[0].size();

10 AT s=0, x0=x; PT dt=1./n, t;

11 for (int j=0;j<m;j++) {

12 t=0;

13 for (int i=0;i<n;i++) {

14 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

15 t+=dt;

16 }

17 s+=x; x=x0;

18 }

19 x=s/m;

20 }

2

21

22 #endif

Listing 2: Primal SDE (Driver)

1 #include "std_includes.h"

2 #include "f.h"

3

4 int main(int c, char* v[]) {

5 assert(c==3);

6 int m=atoi(v[1]), n=atoi(v[2]);

7 double x=1;

8 const vector<double> p(n,1);

9

10 default_random_engine generator;

11 normal_distribution<double> distribution(0.0,1.0);

12 vector<vector<double>> dW(m,vector<double>(n,1));

13 for (int i=0;i<m;i++)

14 for (int j=0;j<n;j++)

15 dW[i][j]=distribution(generator);

16

17 f(x,p,dW);

18 cout << "x=" << x << endl;

19 return 0;

20 }

Listing 3: Approximate Tangent SDE

1 #include "std_includes.h"

2 #include "f.h"

3

4 template<typename T>

5 vector<T> driver(T& x, vector<T>& p,

6 const vector<vector<double>>& dW) {

7 int n=dW[0].size();

8 vector<T> g(n+1,0);

9 double x0=x;

10 f(x,p,dW);

11 double h=sqrt(DBL_EPSILON);

12 double xp=x0+h;

13 f(xp,p,dW);

14 g[0]=(xp-x)/h;

15 for (int i=0;i<n;i++) {

16 xp=x0; p[i]+=h; f(xp,p,dW); g[i+1]=(xp-x)/h; p[i]-=h;

17 }

18 return g;

19 }

3

20

21 int main(int c, char* v[]) {

22 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

23

24 const double x0=1;

25 vector<double> p(n,1);

26

27 default_random_engine generator;

28 normal_distribution<double> distribution(0.0,1.0);

29 vector<vector<double>> dW(m,vector<double>(n,1));

30 for (int i=0;i<m;i++)

31 for (int j=0;j<n;j++)

32 dW[i][j]=distribution(generator);

33

34 double x=x0;

35 vector<double> g=driver(x,p,dW);

36 cout << "dx/dx0=" << g[0] << endl;

37 for (int i=0;i<n;i++)

38 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

39 return 0;

40 }

2 First-Order AD

2.1 Tangents

Listing 4: Tangent SDE (Handwritten)

1 #include "std_includes.h"

2

3 template<typename T>

4 void f_t(T& x, T& xt,

5 const vector<T>& p, vector<T>& pt,

6 const vector<vector<double>>& dW) {

7 int m=dW.size(), n=dW[0].size();

8 T s=0, st=0, x0=x, x0t=xt; double dt=1./n, t;

9 for (int j=0;j<m;j++) {

10 t=0;

11 for (int i=0;i<n;i++) {

12 xt+=dt*sin(x*t)*pt[i]

13 +dt*p[i]*t*cos(x*t)*xt

14 +cos(x*t)*sqrt(dt)*dW[j][i]*pt[i]

15 -p[i]*t*sin(x*t)*sqrt(dt)*dW[j][i]*xt;

16 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

17 t+=dt;

18 }

4

19 st+=xt; s+=x;

20 xt=x0t; x=x0;

21 }

22 xt=st/m; x=s/m;

23 }

24

25 vector<double> driver(double& x, const vector<double>& p,

26 const vector<vector<double>>& dW) {

27 int n=dW[0].size();

28 vector<double> g(n+1,0);

29 double x0=x, xt=1; vector<double> pt(n,0);

30 f_t(x,xt,p,pt,dW);

31 g[0]=xt;

32 for (int i=0;i<n;i++) {

33 x=x0; xt=0; pt[i]=1;

34 f_t(x,xt,p,pt,dW);

35 g[i+1]=xt;

36 pt[i]=0;

37 }

38 return g;

39 }

40

41 int main(int c, char* v[]) {

42 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

43

44 const double x0=1;

45 vector<double> p(n,1);

46

47 default_random_engine generator;

48 normal_distribution<double> distribution(0.0,1.0);

49 vector<vector<double>> dW(m,vector<double>(n,1));

50 for (int i=0;i<m;i++)

51 for (int j=0;j<n;j++)

52 dW[i][j]=distribution(generator);

53

54 double x=x0;

55 vector<double> g=driver(x,p,dW);

56 cout << "dx/dx0=" << g[0] << endl;

57 for (int i=0;i<n;i++)

58 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

59 return 0;

60 }

Listing 5: Tangent SDE (dco/c++)

1 #include "std_includes.h"

2

5

3 #include "dco.hpp"

4 typedef dco::gt1s<double>::type DCO_T;

5

6 #include "f.h"

7

8 vector<double> driver(double& xv, vector<double>& pv,

9 const vector<vector<double>>& dW) {

10 int n=dW[0].size();

11 vector<double> g(n+1,0);

12 DCO_T x0=xv;

13 vector<DCO_T> p(n); dco::value(p)=pv;

14 DCO_T x=x0;

15 dco::derivative(x)=1;

16 f(x,p,dW);

17 g[0]=dco::derivative(x);

18 for (int i=0;i<n;i++) {

19 x=x0;

20 dco::derivative(p[i])=1;

21 f(x,p,dW);

22 g[i+1]=dco::derivative(x);

23 dco::derivative(p[i])=0;

24 }

25 return g;

26 }

27

28 int main(int c, char* v[]) {

29 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

30

31 const double x0=1;

32 vector<double> p(n,1);

33

34 default_random_engine generator;

35 normal_distribution<double> distribution(0.0,1.0);

36 vector<vector<double>> dW(m,vector<double>(n,1));

37 for (int i=0;i<m;i++)

38 for (int j=0;j<n;j++)

39 dW[i][j]=distribution(generator);

40

41 double x=x0;

42 vector<double> g=driver(x,p,dW);

43 cout << "dx/dx0=" << g[0] << endl;

44 for (int i=0;i<n;i++)

45 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

46 return 0;

47 }

6

2.2 Adjoints

Listing 6: Adjoint SDE (Handwritten)

1 #include "std_includes.h"

2

3 template<typename T>

4 void f_a(T& x, T& xa, const vector<T>& p, vector<T>& pa,

5 const vector<vector<double>>& dW) {

6 int m=dW.size(), n=dW[0].size();

7 stack<T> tbr_T; stack<double> tbr_double;

8 // augmented primal

9 T s=0, x0=x; double dt=1./n, t;

10 for (int j=0;j<m;j++) {

11 t=0;

12 for (int i=0;i<n;i++) {

13 tbr_T.push(x);

14 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

15 tbr_double.push(t);

16 t+=dt;

17 }

18 s+=x; x=x0;

19 }

20 x=s/m;

21 T y=x;

22 // adjoint

23 T sa=0, x0a=0;

24 sa+=xa/m; xa=0;

25 for (int j=m-1;j>=0;j--) {

26 x0a+=xa; xa=0;

27 xa+=sa;

28 for (int i=n-1;i>=0;i--) {

29 t=tbr_double.top(); tbr_double.pop();

30 x=tbr_T.top(); tbr_T.pop();

31 pa[i]+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW[j][i])*xa;

32 xa=(1+dt*p[i]*t*cos(x*t)-p[i]*t*sin(x*t)*sqrt(dt)*dW[j][i])*xa;

33 }

34 }

35 xa+=x0a; x0a=0;

36 x=y;

37 }

38

39 vector<double> driver(double& x, vector<double>& p,

40 const vector<vector<double>>& dW) {

41 int n=dW[0].size();

42 vector<double> g(n+1,0);

7

43 double xa=1; vector<double> pa(n,0);

44 f_a(x,xa,p,pa,dW);

45 g[0]=xa;

46 for (int i=0;i<n;i++) g[i+1]=pa[i];

47 return g;

48 }

49

50 int main(int c, char* v[]) {

51 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

52 const double x0=1;

53 vector<double> p(n,1);

54 default_random_engine generator;

55 normal_distribution<double> distribution(0.0,1.0);

56 vector<vector<double>> dW(m,vector<double>(n,1));

57 for (int i=0;i<m;i++)

58 for (int j=0;j<n;j++)

59 dW[i][j]=distribution(generator);

60 double x=x0;

61 vector<double> g=driver(x,p,dW);

62 cout << "dx/dx0=" << g[0] << endl;

63 for (int i=0;i<n;i++)

64 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

65 return 0;

66 }

Listing 7: Adjoint SDE (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::ga1s<double> DCO_AM;

5 typedef DCO_AM::type DCO_A;

6 typedef DCO_AM::tape_t DCO_AM_TAPE;

7

8 #include "f.h"

9

10 vector<double> driver(double& xv, vector<double>& pv,

11 const vector<vector<double>>& dW) {

12 int n=dW[0].size();

13 vector<double> g(n+1,0);

14 DCO_A x0=xv;

15 vector<DCO_A> p(n); dco::value(p)=pv;

16 DCO_AM::global_tape=DCO_AM_TAPE::create();

17 DCO_AM::global_tape->register_variable(x0);

18 DCO_AM::global_tape->register_variable(p);

19 DCO_A x=x0;

20 f(x,p,dW);

8

21 DCO_AM::global_tape->register_output_variable(x);

22 dco::derivative(x)=1;

23 DCO_AM::global_tape->interpret_adjoint();

24 g[0]=dco::derivative(x0);

25 for (int i=0;i<n;i++) g[i+1]=dco::derivative(p[i]);

26 DCO_AM_TAPE::remove(DCO_AM::global_tape);

27 return g;

28 }

29

30 int main(int c, char* v[]) {

31 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

32

33 const double x0=1;

34 vector<double> p(n,1);

35

36 default_random_engine generator;

37 normal_distribution<double> distribution(0.0,1.0);

38 vector<vector<double>> dW(m,vector<double>(n,1));

39 for (int i=0;i<m;i++)

40 for (int j=0;j<n;j++)

41 dW[i][j]=distribution(generator);

42

43 double x=x0;

44 vector<double> g=driver(x,p,dW);

45 cout << "dx/dx0=" << g[0] << endl;

46 for (int i=0;i<n;i++)

47 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

48 return 0;

49 }

2.3 Improvements

2.3.1 Vector Tangents

See LIBOR.

2.3.2 Pathwise Ajoints

Listing 8: Adjoint SDE: Pathwise Adjoints (Handwritten)

1 #include "std_includes.h"

2

3 enum Mode { PRIMAL, CONTEXT_FREE_JOINT_ADJOINT };

4

5 void path(Mode mode, const int n,

6 double& x, double& xa,

7 const vector<double>& p, vector<double>& pa,

9

8 const vector<double>& dW_j) {

9 double t=0, dt=1.0/n;

10 switch (mode) {

11 case PRIMAL:

12 for (int i=0;i<n;i++) {

13 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW_j[i];

14 t+=dt;

15 }

16 break;

17 case CONTEXT_FREE_JOINT_ADJOINT:

18 stack<double> tbr;

19 // augmented primal

20 t=0;

21 for (int i=0;i<n;i++) {

22 tbr.push(x);

23 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW_j[i];

24 t+=dt;

25 }

26 // adjoint

27 t=1;

28 for (int i=n-1;i>=0;i--) {

29 t-=dt;

30 x=tbr.top(); tbr.pop();

31 pa[i]+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW_j[i])*xa;

32 xa=(1+dt*p[i]*t*cos(x*t)-p[i]*t*sin(x*t)*sqrt(dt)*dW_j[i])*xa;

33 }

34 }

35 }

36

37 void f_a(double& x, double& xa,

38 const vector<double>& p, vector<double>& pa,

39 const vector<vector<double>>& dW) {

40 int m=dW.size(), n=dW[0].size();

41 // augmented primal

42 double s=0, x0=x;

43 for (int j=0;j<m;j++) {

44 x=x0;

45 path(PRIMAL,n,x,xa,p,pa,dW[j]);

46 s+=x;

47 }

48 x=s/m;

49 double y=x;

50 // adjoint

51 double sa=0,x0a=0;

52 sa+=xa/m; xa=0;

53 for (int j=m-1;j>=0;j--) {

10

54 x=x0; xa+=sa;

55 path(CONTEXT_FREE_JOINT_ADJOINT,n,x,xa,p,pa,dW[j]);

56 x0a+=xa; xa=0;

57 }

58 xa+=x0a; x0a=0;

59 x=y;

60 }

61

62 vector<double> driver(double& x, vector<double>& p,

63 const vector<vector<double>>& dW) {

64 int n=dW[0].size();

65 vector<double> g(n+1,0);

66 double xa=1; vector<double> pa(n,0);

67 f_a(x,xa,p,pa,dW);

68 g[0]=xa;

69 for (int i=0;i<n;i++) g[i+1]=pa[i];

70 return g;

71 }

72

73 int main(int c, char* v[]) {

74 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

75 const double x0=1;

76 vector<double> p(n,1);

77 default_random_engine generator;

78 normal_distribution<double> distribution(0.0,1.0);

79 vector<vector<double>> dW(m,vector<double>(n,1));

80 for (int i=0;i<m;i++)

81 for (int j=0;j<n;j++)

82 dW[i][j]=distribution(generator);

83 double x=x0;

84 vector<double> g=driver(x,p,dW);

85 cout << "dx/dx0=" << g[0] << endl;

86 for (int i=0;i<n;i++)

87 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

88 return 0;

89 }

2.3.3 Preaccumulation

Listing 9: Adjoint SDE: Preaccumulation (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::ga1s<double> DCO_AM;

5 typedef DCO_AM::type DCO_A;

6 typedef DCO_AM::tape_t DCO_AM_TAPE;

11

7

8 template<typename AT, typename PT>

9 void f(AT& x, const vector<AT>& p, const vector<vector<PT>>& dW) {

10 int m=dW.size(), n=dW[0].size();

11 AT s=0, x0=x; PT dt=1./n, t;

12 for (int j=0;j<m;j++) {

13 DCO_AM::jacobian_preaccumulator_t jp(dco::tape(x));

14 t=0;

15 jp.start();

16 for (int i=0;i<n;i++) {

17 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

18 t+=dt;

19 }

20 jp.register_output(x);

21 jp.finish();

22 s+=x; x=x0;

23 }

24 x=s/m;

25 }

26

27 vector<double> driver(double& xv, vector<double>& pv,

28 const vector<vector<double>>& dW) {

29 int n=dW[0].size();

30 vector<double> g(n+1,0);

31 DCO_A x0=xv;

32 vector<DCO_A> p(n); dco::value(p)=pv;

33 DCO_AM::global_tape=DCO_AM_TAPE::create();

34 DCO_AM::global_tape->register_variable(x0);

35 DCO_AM::global_tape->register_variable(p);

36 DCO_A x=x0;

37 f(x,p,dW);

38 DCO_AM::global_tape->register_output_variable(x);

39 dco::derivative(x)=1;

40 DCO_AM::global_tape->interpret_adjoint();

41 g[0]=dco::derivative(x0);

42 for (int i=0;i<n;i++) g[i+1]=dco::derivative(p[i]);

43 DCO_AM_TAPE::remove(DCO_AM::global_tape);

44 return g;

45 }

46

47 int main(int c, char* v[]) {

48 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

49

50 const double x0=1;

51 vector<double> p(n,1);

52

12

53 default_random_engine generator;

54 normal_distribution<double> distribution(0.0,1.0);

55 vector<vector<double>> dW(m,vector<double>(n,1));

56 for (int i=0;i<m;i++)

57 for (int j=0;j<n;j++)

58 dW[i][j]=distribution(generator);

59

60 double x=x0;

61 vector<double> g=driver(x,p,dW);

62 cout << "dx/dx0=" << g[0] << endl;

63 for (int i=0;i<n;i++)

64 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

65 return 0;

66 }

3 Second-Order AD

3.1 Tangents

Listing 10: Second-Order Tangent SDE (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::gt1s<double>::type DCO_T;

5 typedef dco::gt1s<DCO_T>::type DCO_TT;

6

7 #include "f.h"

8

9 vector<vector<double>> driver(

10 double& xv, const vector<double> &pv,

11 const vector<vector<double>>& dW) {

12 int n=pv.size();

13 vector<DCO_TT> p(n); dco::passive_value(p)=pv;

14 vector<vector<double>> ddxdpp(n,vector<double>(n,0));

15 for (int i=0;i<n;i++) {

16 dco::derivative(dco::value(p[i]))=1;

17 for (int j=0;j<=i;j++) {

18 dco::value(dco::derivative(p[j]))=1;

19 DCO_TT x=xv;

20 f(x,p,dW);

21 ddxdpp[i][j]=dco::derivative(dco::derivative(x));

22 dco::value(dco::derivative(p[j]))=0;

23 }

24 dco::derivative(dco::value(p[i]))=0;

25 }

13

26 return ddxdpp;

27 }

28

29 int main(int c, char* v[]) {

30 assert(c==3);

31 int m=atoi(v[1]), n=atoi(v[2]);

32

33 double x=1;

34 vector<double> p(n,1);

35

36 default_random_engine generator;

37 normal_distribution<double> distribution(0.0,1.0);

38 vector<vector<double>> dW(m,vector<double>(n,1));

39 for (int i=0;i<m;i++)

40 for (int j=0;j<n;j++)

41 dW[i][j]=distribution(generator);

42

43 vector<vector<double>> ddxdpp=driver(x,p,dW);

44 for (int i=0;i<n;i++)

45 for (int j=0;j<=i;j++)

46 cout << "ddx/dpp[" << i << "][" << j << "]="

47 << ddxdpp[i][j] << endl;

48 return 0;

49 }

3.2 Adjoints

Listing 11: Second-Order Adjoint SDE (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::gt1s<double>::type DCO_T;

5 typedef dco::ga1s<DCO_T> DCO_TAM;

6 typedef DCO_TAM::type DCO_TA;

7 typedef DCO_TAM::tape_t DCO_TAM_TAPE;

8 typedef DCO_TAM_TAPE::position_t DCO_TAM_TAPE_POS;

9

10 #include "f.h"

11

12 vector<vector<double>> driver(

13 double& xv, const vector<double> &pv,

14 const vector<vector<double>>& dW) {

15 int n=pv.size();

16 vector<DCO_TA> p(n); dco::passive_value(p)=pv;

17 vector<vector<double>> ddxdpp(n,vector<double>(n,0));

18 DCO_TAM::global_tape=DCO_TAM_TAPE::create();

14

19 DCO_TAM::global_tape->register_variable(p);

20 DCO_TAM_TAPE_POS tpos=DCO_TAM::global_tape->get_position();

21 for (int i=0;i<n;i++) {

22 dco::derivative(dco::value(p[i]))=1;

23 DCO_TA x=xv;

24 f(x,p,dW);

25 dco::value(dco::derivative(x))=1;

26 DCO_TAM::global_tape->interpret_adjoint_and_reset_to(tpos);

27 for (int j=0;j<=i;j++)

28 ddxdpp[i][j]=dco::derivative(dco::derivative(p[j]));

29 for (int j=0;j<n;j++) {

30 dco::derivative(dco::derivative(p[j]))=0;

31 dco::value(dco::derivative(p[j]))=0;

32 }

33 dco::derivative(dco::value(p[i]))=0;

34 }

35 DCO_TAM_TAPE::remove(DCO_TAM::global_tape);

36 return ddxdpp;

37 }

38

39 int main(int c, char* v[]) {

40 assert(c==3);

41 int m=atoi(v[1]), n=atoi(v[2]);

42

43 double x=1;

44 vector<double> p(n,1);

45

46 default_random_engine generator;

47 normal_distribution<double> distribution(0.0,1.0);

48 vector<vector<double>> dW(m,vector<double>(n,1));

49 for (int i=0;i<m;i++)

50 for (int j=0;j<n;j++)

51 dW[i][j]=distribution(generator);

52

53 vector<vector<double>> ddxdpp=driver(x,p,dW);

54 for (int i=0;i<n;i++)

55 for (int j=0;j<=i;j++)

56 cout << "ddx/dpp[" << i << "][" << j << "]="

57 << ddxdpp[i][j] << endl;

58 return 0;

59 }

15

4 Beyond Black-Box AD

4.1 Implicit Functions

4.1.1 Tangents

Listing 12: Algorithmic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2

3 template<typename T>

4 void f_t(T& xv, T& xt, const T& pv, const T& pt, const T& eps) {

5 while (abs(xv*xv-pv)>eps) {

6 xt+=pt/(2*xv)-(3./4.+pv/(4*xv*xv))*xt;

7 xv-=(xv*xv-pv)/(2*xv);

8 }

9 }

10

11 int main(int c, char* v[]) {

12 assert(c==2);

13 double pv=atof(v[1]), xv=1;

14 double pt=1, xt=0;

15 const double eps=1e-12;

16 f_t(xv,xt,pv,pt,eps);

17 cout << "x=" << xv << endl;

18 cout << "dxdp=" << xt << endl;

19 return 0;

20 }

Listing 13: Symbolic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2

3 template<typename T>

4 void f(T& x, const T& p, const T& eps) {

5 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

6 }

7

8 template<typename T>

9 void f_st(const T& xv, T& xt, const T& pt) {

10 xt=pt/(2*xv);

11 }

12

13 int main(int c, char* v[]) {

14 assert(c==2);

15 double pv=atof(v[1]), xv=1;

16 double pt=1, xt=0;

16

17 const double eps=1e-12;

18 f(xv,pv,eps);

19 f_st(xv,xt,pt);

20 cout << "x=" << xv << endl;

21 cout << "dxdp=" << xt << endl;

22 return 0;

23 }

4.1.2 Adjoints

Listing 14: Algorithmic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2

3 template<typename T>

4 void f_a(T& xv, T& xa, const T& pv, T& pa, const T& eps) {

5 stack<T> tbr_T;

6 int i=0;

7 while (abs(xv*xv-pv)>eps) {

8 tbr_T.push(xv);

9 xv-=(xv*xv-pv)/(2*xv);

10 i++;

11 }

12 double y=xv;

13 for (int j=0;j<i;j++) {

14 xv=tbr_T.top(); tbr_T.pop();

15 pa+=xa/(2*xv);

16 xa-=(3./4.+pv/(4*xv*xv))*xa;

17 }

18 xv=y;

19 }

20

21 int main(int c, char* v[]) {

22 assert(c==2);

23 double pv=atof(v[1]), xv=1;

24 double pa=0, xa=1;

25 const double eps=1e-12;

26 f_a(xv,xa,pv,pa,eps);

27 cout << "x=" << xv << endl;

28 cout << "dxdp=" << pa << endl;

29 return 0;

30 }

Listing 15: Symbolic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2

17

3 template<typename T>

4 void f(T& x, const T& p, const T& eps) {

5 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

6 }

7

8 template<typename T>

9 void f_sa(const T& xv, T& xa, T& pa) {

10 pa+=xa/(2*xv); xa=0;

11 }

12

13 int main(int c, char* v[]) {

14 assert(c==2);

15 double pv=atof(v[1]), xv=1;

16 double pa=0, xa=1;

17 const double eps=1e-12;

18 f(xv,pv,eps);

19 f_sa(xv,xa,pa);

20 cout << "x=" << xv << endl;

21 cout << "dxdp=" << pa << endl;

22 return 0;

23 }

4.2 Checkpointing

Listing 16: Adjoint SDE: Pathwise Adjoints with Equidistant Checkpointing
(Handwritten)

1 #include "std_includes.h"

2

3 enum Mode { PRIMAL, CONTEXT_FREE_JOINT_FORWARD, CONTEXT_FREE_JOINT_BACKWARD,

4 CONTEXT_SENSITIVE_JOINT };

5

6 template<typename T>

7 void steps(Mode mode, int from, int to, T& x, T &xa,

8 const vector<T>& p, vector<T>& pa,

9 const vector<double>& dW_j) {

10 static stack<T> tbr_T; static stack<double> tbr_d;

11 int n=p.size(); double dt=1.0/n, t=from*dt;

12 switch (mode) {

13 default: assert(false); break;

14 case CONTEXT_FREE_JOINT_FORWARD:

15 tbr_T.push(x); tbr_d.push(t);

16 for (int i=from;i<to;i++) {

17 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW_j[i];

18 t+=dt;

19 }

20 break;

18

21 case CONTEXT_FREE_JOINT_BACKWARD:

22 t=tbr_d.top(); tbr_d.pop(); x=tbr_T.top(); tbr_T.pop();

23 case CONTEXT_SENSITIVE_JOINT:

24 for (int i=from;i<to;i++) {

25 tbr_T.push(x);

26 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW_j[i];

27 t+=dt;

28 }

29 double y=x;

30 for (int i=to-1;i>=from;i--) {

31 t-=dt;

32 x=tbr_T.top(); tbr_T.pop();

33 pa[i]+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW_j[i])*xa;

34 xa=(1+dt*p[i]*t*cos(x*t)-p[i]*t*sin(x*t)*sqrt(dt)*dW_j[i])*xa;

35 }

36 x=y;

37 }

38 }

39

40 template<typename T>

41 void path(Mode mode, const int ncs,

42 T& x, T& xa, const vector<T>& p, vector<T>& pa,

43 const vector<double>& dW_j) {

44 int n=dW_j.size();

45 double t=0, dt=1.0/n;

46 switch (mode) {

47 default: assert(false); break;

48 case PRIMAL:

49 for (int i=0;i<n;i++) {

50 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW_j[i];

51 t+=dt;

52 }

53 break;

54 case CONTEXT_SENSITIVE_JOINT:

55 t=0;

56 for (int i=0;i<n-ncs;i+=ncs)

57 steps(CONTEXT_FREE_JOINT_FORWARD,i,i+ncs,x,xa,p,pa,dW_j);

58 steps(CONTEXT_SENSITIVE_JOINT,n-ncs,n,x,xa,p,pa,dW_j);

59 T y=x;

60 for (int i=n-2*ncs;i>=0;i-=ncs)

61 steps(CONTEXT_FREE_JOINT_BACKWARD,i,i+ncs,x,xa,p,pa,dW_j);

62 x=y;

63 }

64 }

65

66 void f_a(const int ncs, double& x, double& xa,

19

67 const vector<double>& p, vector<double>& pa,

68 const vector<vector<double>>& dW) {

69 int m=dW.size();

70 // augmented primal

71 double s=0, x0=x;

72 for (int j=0;j<m;j++) {

73 x=x0;

74 path(PRIMAL,ncs,x,xa,p,pa,dW[j]);

75 s+=x;

76 }

77 x=s/m;

78 double y=x;

79 // adjoint

80 double sa=0,x0a=0;

81 sa+=xa/m; xa=0;

82 for (int j=m-1;j>=0;j--) {

83 x=x0; xa+=sa;

84 path(CONTEXT_SENSITIVE_JOINT,ncs,x,xa,p,pa,dW[j]);

85 x0a+=xa; xa=0;

86 }

87 xa+=x0a; x0a=0;

88 x=y;

89 }

90

91 vector<double> driver(const int ncs, double& x, vector<double>& p,

92 const vector<vector<double>>& dW) {

93 int n=dW[0].size();

94 vector<double> g(n+1,0);

95 double xa=1; vector<double> pa(n,0);

96 f_a(ncs,x,xa,p,pa,dW);

97 g[0]=xa;

98 for (int i=0;i<n;i++) g[i+1]=pa[i];

99 return g;

100 }

101

102 int main(int c, char* v[]) {

103 assert(c==4); int m=atoi(v[1]), n=atoi(v[2]), ncs=atoi(v[3]);

104 const double x0=1;

105 vector<double> p(n,1);

106 default_random_engine generator;

107 normal_distribution<double> distribution(0.0,1.0);

108 vector<vector<double>> dW(m,vector<double>(n,1));

109 for (int i=0;i<m;i++)

110 for (int j=0;j<n;j++)

111 dW[i][j]=distribution(generator);

112 double x=x0;

20

113 vector<double> g=driver(ncs,x,p,dW);

114 cout << "dx/dx0=" << g[0] << endl;

115 for (int i=0;i<n;i++)

116 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;

117 return 0;

118 }

A PDE / Explicit Scheme

Listing 17: Primal PDE / Explicit Scheme

1 #ifndef __F_H_INCLUDED_

2 #define __F_H_INCLUDED_

3

4 template <typename AT, typename PT>

5 inline void step(const int m, const vector<PT>& p, vector<AT>& y) {

6 int n=y.size();

7 vector<AT> r(n);

8 AT v=p[0]*(n+1)*(n+1);

9 r[0]=v*(p[1]-2*y[0]+y[1]);

10 for (int i=1;i<n-1;i++) r[i]=v*(y[i-1]-2*y[i]+y[i+1]);

11 r[n-1]=v*(y[n-2]-2*y[n-1]+p[2]);

12 for (int i=0;i<n;i++) y[i]+=r[i]/m;

13 }

14

15 template <typename AT, typename PT>

16 inline void f(const int m, const vector<PT>& p, vector<AT>& y) {

17 for (int j=0;j<m;j++) step(m,p,y);

18 }

19

20 #endif

Listing 18: Primal PDE / Explicit Scheme (Driver)

1 #include "std_includes.h"

2

3 #include "f.h"

4

5 int main(int c, char* v[]){

6 assert(c==3);

7 int n=atoi(v[1]), m=atoi(v[2]);

8 vector<double> y(n), p={1e-3,42,0};

9 for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));

10 f(m,p,y);

11 cout << 0 << " " << p[1] << endl;

12 for (int i=0;i<n;i++)

13 cout << static_cast<double>(i+1)/(n+1) << " " << y[i] << endl;

21

14 cout << 1 << " " << p[2] << endl;

15 return 0;

16 }

A.1 Tangents

Listing 19: Tangent PDE / Explicit Scheme (Handwritten)

1 #include "std_includes.h"

2

3 template <typename AT, typename PT>

4 inline void step_t(const int m,

5 const vector<PT>& p, const vector<PT>& p_t,

6 vector<AT>& y, vector<AT>& y_t)

7 {

8 int n=y.size();

9 vector<AT> r(n), r_t(n);

10 int ns=(n+1)*(n+1);

11 AT v=p[0]*ns;

12 r_t[0]=p_t[0]*ns*(p[1]-2*y[0]+y[1])

13 +v*p_t[1]-v*2*y_t[0]+v*y_t[1];

14 r[0]=v*(p[1]-2*y[0]+y[1]);

15 for (int i=1;i<n-1;i++) {

16 r_t[i]=p_t[0]*ns*(y[i-1]-2*y[i]+y[i+1])

17 +v*y_t[i-1]-v*2*y_t[i]+v*y_t[i+1];

18 r[i]=v*(y[i-1]-2*y[i]+y[i+1]);

19 }

20 r_t[n-1]=p_t[0]*ns*(y[n-2]-2*y[n-1]+p[2])

21 +v*y_t[n-2]-v*2*y_t[n-1]+v*p_t[2];

22 r[n-1]=v*(y[n-2]-2*y[n-1]+p[2]);

23 for (int i=0;i<n;i++) {

24 y_t[i]+=r_t[i]/m;

25 y[i]+=r[i]/m;

26 }

27 }

28

29 template <typename AT, typename PT>

30 inline void f_t(const int m,

31 const vector<PT>& p, const vector<PT>& p_t,

32 vector<AT>& y, vector<AT>& y_t)

33 {

34 for (int j=0;j<m;j++) step_t(m,p,p_t,y,y_t);

35 }

36

37 int main(int c, char* v[]) {

38 cout.precision(15);

39 assert(c==3);

22

40 int n=atoi(v[1]), m=atoi(v[2]);

41 vector<double> y(n), y_t(n);

42 vector<double> p={1e-3,42,0}, p_t(3,0);

43 for (int j=0;j<n;j++) {

44 for (int i=0;i<n;i++) {

45 y[i]=(i+1)*log(static_cast<double>(i+2));

46 y_t[i]=0;

47 }

48 y_t[j]=1;

49 f_t(m,p,p_t,y,y_t);

50 cout << "dy(n/2)/dy0[" << j << "]=" << y_t[n/2] << endl;

51 }

52 return 0;

53 }

Listing 20: Tangent PDE / Explicit Scheme (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::gt1s<double>::type DCO_T;

5

6 #include "f.h"

7

8 int main(int argc, char* argv[]){

9 assert(argc==3);

10 int n=atoi(argv[1]), m=atoi(argv[2]);

11 vector<DCO_T> y(n), p={1e-3,42,0};

12 for (int j=0;j<n;j++) {

13 for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));

14 dco::derivative(y[j])=1;

15 f(m,p,y);

16 cout << "dy(n/2)/dy0[" << j << "]=" << dco::derivative(y[n/2]) << endl;

17 }

18 return 0;

19 }

A.2 Adjoints

Listing 21: Adjoint PDE / Explicit Scheme (Handwritten)

1 #include "std_includes.h"

2

3 enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

4

5 template <typename AT, typename PT>

6 inline void step_a(Mode mode, const int m,

23

7 const vector<PT>& p, vector<PT>& p_a,

8 vector<AT>& y, vector<AT>& y_a)

9 {

10 int n=y.size();

11 static stack<vector<AT>> tbr;

12 vector<AT> r(n), r_a(n,0);

13 int ns=(n+1)*(n+1); AT v=p[0]*ns;

14 switch (mode) {

15 case AUGMENTED_PRIMAL:

16 r[0]=v*(p[1]-2*y[0]+y[1]);

17 for (int i=1;i<n-1;i++)

18 r[i]=v*(y[i-1]-2*y[i]+y[i+1]);

19 r[n-1]=v*(y[n-2]-2*y[n-1]+p[2]);

20 tbr.push(y);

21 for (int i=0;i<n;i++) y[i]+=r[i]/m;

22 break;

23 case SPLIT_ADJOINT:

24 y=tbr.top(); tbr.pop();

25 for (int i=0;i<n;i++) r_a[i]+=y_a[i]/m;

26 p_a[0]+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

27 p_a[1]+=v*r_a[0]; y_a[0]-=v*2*r_a[0];

28 y_a[1]+=v*r_a[0]; r_a[0]=0;

29 for (int i=1;i<n-1;i++) {

30 p_a[0]+=ns*(y[i-1]-2*y[i]+y[i+1])*r_a[i];

31 y_a[i-1]+=v*r_a[i]; y_a[i]-=v*2*r_a[i];

32 y_a[i+1]+=v*r_a[i]; r_a[i]=0;

33 }

34 p_a[0]+=ns*(y[n-2]-2*y[n-1]+p[2])*r_a[n-1];

35 y_a[n-2]+=v*r_a[n-1]; y_a[n-1]-=v*2*r_a[n-1];

36 p_a[2]+=v*r_a[n-1]; r_a[n-1]=0;

37 break;

38 }

39 }

40

41 template <typename AT, typename PT>

42 inline void f_a(const int m,

43 const vector<PT>& p, vector<PT>& p_a,

44 vector<AT>& y, vector<AT>& y_a)

45 {

46 for (int j=0;j<m;j++) step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);

47 for (int j=0;j<m;j++) step_a(SPLIT_ADJOINT,m,p,p_a,y,y_a);

48 }

49

50 int main(int c, char* v[]) {

51 cout.precision(15);

52 assert(c==3);

24

53 int n=atoi(v[1]), m=atoi(v[2]);

54 vector<double> y(n), y_a(n,0);

55 for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));

56 vector<double> p={1e-3,42,0}, p_a(3,0);

57 y_a[n/2]=1;

58 f_a(m,p,p_a,y,y_a);

59 for (int i=0;i<n;i++)

60 cout << "dy(n/2)/dy0[" << i << "]=" << y_a[i] << endl;

61 return 0;

62 }

Listing 22: Adjoint PDE / Explicit Scheme (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef double DCO_BT;

5 typedef dco::ga1sm<DCO_BT> DCO_AM;

6 typedef DCO_AM::type DCO_A;

7 typedef DCO_AM::tape_t DCO_AM_TAPE;

8

9 #include "f.h"

10

11 int main(int c, char* v[]){

12 assert(c==3); int n=atoi(v[1]), m=atoi(v[2]);

13 vector<DCO_A> y0(n), p={1e-3,42,0};

14 for (int i=0;i<n;i++) y0[i]=(i+1)*log(static_cast<double>(i+2));

15 DCO_AM_TAPE* tape=DCO_AM_TAPE::create();

16 tape->register_variable(y0);

17 vector<DCO_A> y=y0;

18 f(m,p,y);

19 tape->register_output_variable(y);

20 dco::derivative(y[n/2])=1.;

21 tape->interpret_adjoint();

22 for(int i=0;i<n;i++)

23 cout << "dy(n/2)/dy0[" << i << "]=" << dco::derivative(y0[i]) << endl;

24 DCO_AM_TAPE::remove(tape);

25 return 0;

26 }

Listing 23: Adjoint PDE / Explicit Scheme with Equidistant Checkpointing
(Handwritten)

1 #include "std_includes.h"

2

3 #include "Eigen/Dense"

4 using namespace Eigen;

25

5

6 enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

7

8 template <typename AT, typename PT>

9 inline void step_a(Mode mode, const int m,

10 const vector<PT>& p, vector<PT>& p_a,

11 vector<AT>& y, vector<AT>& y_a)

12 {

13 int n=y.size();

14 static stack<vector<AT>> tbr;

15 vector<AT> r(n), r_a(n,0);

16 int ns=(n+1)*(n+1); AT v=p[0]*ns;

17 switch (mode) {

18 case PRIMAL:

19 r[0]=v*(p[1]-2*y[0]+y[1]);

20 for (int i=1;i<n-1;i++)

21 r[i]=v*(y[i-1]-2*y[i]+y[i+1]);

22 r[n-1]=v*(y[n-2]-2*y[n-1]+p[2]);

23 for (int i=0;i<n;i++) y[i]+=r[i]/m;

24 break;

25 case AUGMENTED_PRIMAL:

26 r[0]=v*(p[1]-2*y[0]+y[1]);

27 for (int i=1;i<n-1;i++)

28 r[i]=v*(y[i-1]-2*y[i]+y[i+1]);

29 r[n-1]=v*(y[n-2]-2*y[n-1]+p[2]);

30 tbr.push(y);

31 for (int i=0;i<n;i++) y[i]+=r[i]/m;

32 break;

33 case SPLIT_ADJOINT:

34 y=tbr.top(); tbr.pop();

35 for (int i=0;i<n;i++) r_a[i]+=y_a[i]/m;

36 p_a[0]+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

37 p_a[1]+=v*r_a[0]; y_a[0]-=v*2*r_a[0];

38 y_a[1]+=v*r_a[0]; r_a[0]=0;

39 for (int i=1;i<n-1;i++) {

40 p_a[0]+=ns*(y[i-1]-2*y[i]+y[i+1])*r_a[i];

41 y_a[i-1]+=v*r_a[i]; y_a[i]-=v*2*r_a[i];

42 y_a[i+1]+=v*r_a[i]; r_a[i]=0;

43 }

44 p_a[0]+=ns*(y[n-2]-2*y[n-1]+p[2])*r_a[n-1];

45 y_a[n-2]+=v*r_a[n-1]; y_a[n-1]-=v*2*r_a[n-1];

46 p_a[2]+=v*r_a[n-1]; r_a[n-1]=0;

47 break;

48 }

49 }

50

26

51 template <typename AT, typename PT>

52 inline void f_a(const int m, const int ncs,

53 const vector<PT>& p, vector<PT>& p_a,

54 vector<AT>& y, vector<AT>& y_a)

55 {

56 stack<vector<AT>> cp;

57 for (int j=0;j<m-ncs;j+=ncs) {

58 cp.push(y);

59 for (int i=0;i<ncs;i++)

60 step_a(PRIMAL,m,p,p_a,y,y_a);

61 }

62 for (int i=0;i<ncs;i++)

63 step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);

64 for (int i=0;i<ncs;i++)

65 step_a(SPLIT_ADJOINT,m,p,p_a,y,y_a);

66 for (int j=0;j<m-ncs;j+=ncs) {

67 y=cp.top(); cp.pop();

68 for (int i=0;i<ncs;i++)

69 step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);

70 for (int i=0;i<ncs;i++)

71 step_a(SPLIT_ADJOINT,m,p,p_a,y,y_a);

72 }

73 }

74

75 int main(int c, char* v[]) {

76 assert(c==4);

77 int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]);

78 vector<double> y(n), y_a(n,0);

79 for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));

80 vector<double> p={1e-3,42,0}, p_a(3,0);

81 y_a[n/2]=1;

82 f_a(m,ncs,p,p_a,y,y_a);

83 for (int i=0;i<n;i++)

84 cout << "dy(n/2)/dy0[" << i << "]=" << y_a[i] << endl;

85 return 0;

86 }

B PDE / Implicit Scheme

Listing 24: Primal PDE / Implicit Scheme

1 #ifndef __F_H_INCLUDED_

2 #define __F_H_INCLUDED_

3

4 #include <Eigen/LU>

5 using namespace Eigen;

27

6

7 // rhs of ode

8 template <typename T, int N=Dynamic>

9 inline void g(const Matrix<T,3,1>& p, const Matrix<T,N,1>& y,

10 Matrix<T,N,1>& r) {

11 int n=y.size();

12 for (int i=0;i<n;i++) {

13 r(i)=p(0)*(n+1)*(n+1);

14 if (i==0)

15 r(i)*=p(1)-2*y(i)+y(i+1);

16 else if (i==n-1)

17 r(i)*=y(i-1)-2*y(i)+p(2);

18 else

19 r(i)*=y(i-1)-2*y(i)+y(i+1);

20 }

21 }

22

23 // tangent of rhs of ode

24 template <typename T, int N=Dynamic>

25 inline void g_t(const Matrix<T,3,1>& p, const Matrix<T,N,1>& y,

26 const Matrix<T,N,1>& y_t, Matrix<T,N,1>& r_t) {

27 int n=y.size();

28 for (int i=0;i<n;i++) {

29 r_t(i)=p(0)*(n+1)*(n+1);

30 if (i==0)

31 r_t(i)*=-2*y_t(i)+y_t(i+1);

32 else if (i==n-1)

33 r_t(i)*=y_t(i-1)-2*y_t(i);

34 else

35 r_t(i)*=y_t(i-1)-2*y_t(i)+y_t(i+1);

36 }

37 }

38

39 // Jacobian of rhs of ode

40 template <typename T, int N=Dynamic>

41 inline void dgdy(const Matrix<T,3,1>& p,

42 const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {

43 int n=y.size();

44 Matrix<T,N,1> r=Matrix<T,N,1>::Zero(n), r_t=Matrix<T,N,1>::Zero(n);

45 for (int i=0;i<n;i++) {

46 Matrix<T,N,1> y_t=Matrix<T,N,1>::Zero(n);

47 y_t(i)=1;

48 g_t(p,y,y_t,r_t);

49 if (i>0) A(i,i-1)=r_t(i-1);

50 A(i,i)=r_t(i);

51 if (i<n-1) A(i,i+1)=r_t(i+1);

28

52 }

53 }

54

55 template <typename T, int N=Dynamic>

56 inline void dfdy(const int m, const Matrix<T,3,1>& p,

57 const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {

58 int n=y.size();

59 dgdy(p,y,A);

60 A=Matrix<T,N,N>::Identity(n,n)-A/m;

61 }

62

63 // residual of nls

64 template <typename T, int N=Dynamic>

65 inline void f(const int m, const Matrix<T,3,1>& p,

66 const Matrix<T,N,1>& y, const Matrix<T,N,1>& y_prev,

67 Matrix<T,N,1>& r) {

68 g(p,y,r); r=y-y_prev-r/m;

69 }

70

71 // Newton solver for nls

72 template <typename T, int N=Dynamic>

73 inline void newton(const int m, const Matrix<T,3,1>& p,

74 const Matrix<T,N,1>& y_prev, Matrix<T,N,1>& y) {

75 int n=y.size();

76 const double eps=1e-12;

77 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);

78 Matrix<T,N,1> r=Matrix<T,N,1>::Zero(n);

79 f(m,p,y,y_prev,r);

80 while (r.norm()>eps) {

81 dfdy(m,p,y,A);

82 PartialPivLU<Matrix<T,N,N>> LU(A);

83 y-=LU.solve(r);

84 f(m,p,y,y_prev,r);

85 }

86 }

87

88 // implicit Euler integration

89 template <typename T, int N=Dynamic>

90 inline void f(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y) {

91 for (int j=0;j<m;j++) {

92 Matrix<T,N,1> y_prev=y;

93 newton(m,p,y_prev,y);

94 }

95 }

96

97 #endif

29

Listing 25: Primal PDE / Implicit Scheme (Driver)

1 #include "std_includes.h"

2 #include "f.h"

3

4 int main(int c, char* v[]){

5 assert(c==3);

6 int n=atoi(v[1]), m=atoi(v[2]);

7 Matrix<double,Dynamic,1> y(n);

8 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

9 Matrix<double,3,1> p(3); p(0)=1e-4; p(1)=42; p(2)=0;

10 f(m,p,y);

11 cout << 0 << " " << p(1) << endl;

12 for (int i=0;i<n;i++)

13 cout << static_cast<double>(i+1)/(n+1) << " " << y(i) << endl;

14 cout << 1 << " " << p(2) << endl;

15 return 0;

16 }

B.1 Tangents

Listing 26: Symbolic Tangent PDE / Implicit Scheme (Handwritten)

1 #include "std_includes.h"

2 #include "f.h"

3

4 template <typename T, int N=Dynamic>

5 inline void step_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,

6 Matrix<T,N,1>& y_t) {

7 int n=y.size();

8 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);

9 Matrix<T,N,1> y_prev=y;

10 newton(m,p,y_prev,y);

11 dfdy(m,p,y,A);

12 PartialPivLU<Matrix<T,N,N>> LU(A);

13 y_t=LU.solve(y_t);

14 }

15

16 template <typename T, int N=Dynamic>

17 inline void f_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,

18 Matrix<T,N,1>& y_t) {

19 for (int j=0;j<m;j++) step_t(m,p,y,y_t);

20 }

21

22 int main(int c, char* v[]){

23 assert(c==3);

24 int n=atoi(v[1]), m=atoi(v[2]);

30

25 Matrix<double,Dynamic,1> y=Matrix<double,Dynamic,1>::Zero(n);

26 Matrix<double,3,1> p=Matrix<double,3,1>::Zero(3);

27 p(0)=1e-3; p(1)=42; p(2)=0;

28 for (int j=0;j<n;j++) {

29 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

30 Matrix<double,Dynamic,1> y_t=Matrix<double,Dynamic,1>::Zero(n);

31 y_t(j)=1;

32 f_t(m,p,y,y_t);

33 cout << "dy(n/2)/dy0[" << j << "]=" << y_t(n/2) << endl;

34 }

35 return 0;

36 }

Listing 27: Algorithmic Tangent PDE / Implicit Scheme (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::gt1s<double>::type DCO_T;

5

6 #include "f.h"

7

8 int main(int c, char* v[]){

9 assert(c==3);

10 int n=atoi(v[1]), m=atoi(v[2]);

11 Matrix<DCO_T,Dynamic,1> y(n);

12 Matrix<DCO_T,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;

13 for (int j=0;j<n;j++) {

14 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

15 dco::derivative(y(j))=1;

16 f(m,p,y);

17 cout << "dy(n/2)/dy0[" << j << "]=" << dco::derivative(y(n/2)) << endl;

18 }

19 return 0;

20 }

B.2 Adjoints

Listing 28: Algorithmic Adjoint PDE / Implicit Scheme (dco/c++)

1 #include "std_includes.h"

2

3 #include "dco.hpp"

4 typedef dco::ga1sm<double> DCO_AM;

5 typedef DCO_AM::type DCO_A;

6 typedef DCO_AM::tape_t DCO_AM_TAPE;

7

31

8 #include "f.h"

9

10 int main(int c, char* v[]){

11 assert(c==3);

12 int n=atoi(v[1]), m=atoi(v[2]);

13 Matrix<DCO_A,Dynamic,1> y0=Matrix<DCO_A,Dynamic,1>::Zero(n);

14 for (int i=0;i<n;i++) y0(i)=(i+1)*log(static_cast<double>(i+2));

15 Matrix<DCO_A,3,1> p=Matrix<DCO_A,3,1>::Zero(3);

16 p(0)=1e-3; p(1)=42; p(2)=0;

17 DCO_AM_TAPE* tape=DCO_AM_TAPE::create();

18 for(int i=0;i<n;i++) tape->register_variable(y0(i));

19 Matrix<DCO_A,Dynamic,1> y=y0;

20 f(m,p,y);

21 for(int i=0;i<n;i++) tape->register_output_variable(y(i));

22 dco::derivative(y(n/2))=1.;

23 tape->interpret_adjoint();

24 for(int i=0;i<n;i++)

25 cout << "dy(n/2)/dy0[" << i << "]=" << dco::derivative(y0(i)) << endl;

26 DCO_AM_TAPE::remove(tape);

27 return 0;

28 }

Listing 29: Algorithmic Adjoint PDE with Symbolic Adjoint Nonlinear Euler
System (Handwritten)

1 #include "std_includes.h"

2 #include "f.h"

3

4 enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

5

6 template <typename T, int N=Dynamic>

7 inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,

8 Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {

9 static stack<Matrix<T,N,1>> psols;

10 int n=y.size();

11 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);

12 switch (mode) {

13 case AUGMENTED_PRIMAL: {

14 Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);

15 y_prev=y;

16 newton(m,p,y_prev,y);

17 psols.push(y);

18 break;

19 }

20 case SPLIT_ADJOINT: {

21 y=psols.top(); psols.pop();

22 dfdy(m,p,y,A);

32

23 PartialPivLU<Matrix<T,N,N>> LU(A.transpose());

24 y_a=LU.solve(y_a);

25 break;

26 }

27 }

28 }

29

30 template <typename T, int N=Dynamic>

31 inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,

32 Matrix<T,N,1>& y_a) {

33 for (int j=0;j<m;j++)

34 step_a(AUGMENTED_PRIMAL,m,p,y,y_a);

35 for (int j=0;j<m;j++)

36 step_a(SPLIT_ADJOINT,m,p,y,y_a);

37 }

38

39 int main(int c, char* v[]){

40 assert(c==3);

41 int n=atoi(v[1]), m=atoi(v[2]);

42 Matrix<double,Dynamic,1> y(n);

43 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

44 Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;

45 Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);

46 y_a(n/2)=1;

47 f_a(m,p,y,y_a);

48 for(int i=0;i<n;i++)

49 cout << "dy(n/2)/dy0[" << i << "]=" << y_a(i) << endl;

50 return 0;

51 }

Listing 30: Symbolic Adjoint PDE / Implicit Scheme with Equidistant Check-
pointing (Handwritten)

1 #include "std_includes.h"

2 #include "f.h"

3

4 enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

5

6 template <typename T, int N=Dynamic>

7 inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,

8 Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {

9 static stack<Matrix<T,N,1>> psols;

10 int n=y.size();

11 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);

12 switch (mode) {

13 case PRIMAL: {

14 Matrix<T,N,1> y_prev=y;

33

15 newton(m,p,y_prev,y);

16 break;

17 }

18 case AUGMENTED_PRIMAL: {

19 Matrix<T,N,1> y_prev=y;

20 newton(m,p,y_prev,y);

21 psols.push(y);

22 break;

23 }

24 case SPLIT_ADJOINT: {

25 y=psols.top(); psols.pop();

26 dfdy(m,p,y,A);

27 PartialPivLU<Matrix<T,N,N>> LU(A.transpose());

28 y_a=-LU.solve(-y_a);

29 break;

30 }

31 }

32 }

33

34 template <typename T, int N=Dynamic>

35 inline void f_a(const int m, const int ncs, const Matrix<T,3,1>& p,

36 Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {

37 static stack<Matrix<T,N,1>> cp;

38 for (int j=0;j<m-ncs;j+=ncs) {

39 cp.push(y);

40 for (int i=0;i<ncs;i++)

41 step_a(PRIMAL,m,p,y,y_a);

42 }

43 for (int i=0;i<ncs;i++)

44 step_a(AUGMENTED_PRIMAL,m,p,y,y_a);

45 for (int i=0;i<ncs;i++)

46 step_a(SPLIT_ADJOINT,m,p,y,y_a);

47 for (int j=0;j<m-ncs;j+=ncs) {

48 y=cp.top(); cp.pop();

49 for (int i=0;i<ncs;i++)

50 step_a(AUGMENTED_PRIMAL,m,p,y,y_a);

51 for (int i=0;i<ncs;i++)

52 step_a(SPLIT_ADJOINT,m,p,y,y_a);

53 }

54 }

55

56 int main(int c, char* v[]){

57 assert(c==4);

58 int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]); assert(m%ncs==0);

59 Matrix<double,Dynamic,1> y(n);

60 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

34

61 Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;

62 Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);

63 y_a(n/2)=1;

64 f_a(m,ncs,p,y,y_a);

65 for(int i=0;i<n;i++)

66 cout << "dy(n/2)/dy0[" << i << "]=" << y_a(i) << endl;

67 return 0;

68 }

Listing 31: Symbolic Adjoint PDE / Explicit Scheme (Handwritten)

1 #include "std_includes.h"

2 #include "f.h"

3

4 enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

5

6 template <typename T, int N=Dynamic>

7 inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,

8 Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {

9 static stack<Matrix<T,N,1>> psols;

10 int n=y.size();

11 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);

12 switch (mode) {

13 case AUGMENTED_PRIMAL: {

14 Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);

15 y_prev=y;

16 newton(m,p,y_prev,y);

17 psols.push(y);

18 break;

19 }

20 case SPLIT_ADJOINT: {

21 y=psols.top(); psols.pop();

22 dgdy(p,y,A);

23 y_a=y_a+A.transpose()*y_a/m;

24 break;

25 }

26 }

27 }

28

29 template <typename T, int N=Dynamic>

30 inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,

31 Matrix<T,N,1>& y_a) {

32 for (int j=0;j<m;j++)

33 step_a(AUGMENTED_PRIMAL,m,p,y,y_a);

34 for (int j=0;j<m;j++)

35 step_a(SPLIT_ADJOINT,m,p,y,y_a);

36 }

35

37

38 int main(int c, char* v[]){

39 assert(c==3);

40 int n=atoi(v[1]), m=atoi(v[2]);

41 Matrix<double,Dynamic,1> y(n);

42 for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

43 Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;

44 Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);

45 y_a(n/2)=1;

46 f_a(m,p,y,y_a);

47 for(int i=0;i<n;i++)

48 cout << "dy(n/2)/dy0[" << i << "]=" << y_a(i) << endl;

49 return 0;

50 }

C LIBOR

Listing 32: Primal LIBOR

1 #include "std_includes.h"

2

3 const int p=10;

4 const int m=40;

5 const int n=m+40;

6 const int no=15;

7

8 const double delta=0.25;

9 const vector<int> maturities({4,4,4,8,8,8,20,20,20,28,28,28,40,40,40});

10 const vector<double> swaprates({.045,.05,.055,.045,.05,.055,.045,.05,

11 .055,.045,.05,.055,.045,.05,.055});

12 const vector<double> sigma(n,0.2);

13

14 template <typename T>

15 inline void path_calc(

16 const int path,

17 vector<T>& L,

18 const vector<vector<double>>& Z

19) {

20 for(int j=0;j<m;j++) {

21 double aux1=sqrt(delta)*Z[path][j];

22 T S=0.0;

23 for (int i=j+1;i<n;i++) {

24 double aux2=delta*sigma[i-j-1];

25 S+=(aux2*L[i])/(1.0+delta*L[i]);

26 L[i]=L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2));

27 }

36

28 }

29 }

30

31 template <typename T>

32 inline void portfolio(const vector<T>& L, T& P) {

33 vector<T> B(n),S(n);

34 T b=1.0;

35 T s=0.0;

36 for (int j=m;j<n;j++) {

37 b=b/(1.0+delta*L[j]); B[j]=b;

38 s=s+delta*b; S[j]=s;

39 }

40 P=0;

41 for (int i=0;i<no;i++){

42 int j=maturities[i]+m-1;

43 T swapval=B[j]+swaprates[i]*S[j]-1.0;

44 if (swapval<0) P+=-100.0*swapval;

45 }

46 for (int i=0;i<m;i++) P=P/(1.0+delta*L[i]);

47 }

48

49 template<typename T>

50 inline void f(const vector<T>& L, T& P, const vector<vector<double>>& Z) {

51 T Ps=0;

52 for (int j=0;j<p;j++) {

53 vector<T> Lc(L);

54 path_calc(j,Lc,Z);

55 portfolio(Lc,P);

56 Ps+=P;

57 }

58 P=Ps/p;

59 }

Listing 33: Primal LIBOR (Driver)

1 #include "std_includes.h"

2 #include "f.h"

3

4 int main() {

5 vector<double> L(n,0.05); double P=0;

6 srand(0); default_random_engine generator(0);

7 normal_distribution<double> distribution(0.0,1.0);

8 vector<vector<double>> Z(p,vector<double>(m));

9 for (int j=0; j<p;j++)

10 for (int i=0;i<m;i++)

11 Z[j][i]=0.3+distribution(generator);

12 f(L,P,Z);

37

13 cout << "P=" << P << endl;

14 return 0;

15 }

C.1 First-Order AD

C.1.1 Tangents

Listing 34: Tangent LIBOR (Handwritten)

1 #include "std_includes.h"

2 #include "f.h"

3

4 template <typename T>

5 inline void path_calc_t(

6 const int path,

7 vector<T>& L,

8 vector<T>& L_t,

9 const vector<vector<double>>& Z

10) {

11 for(int j=0;j<m;j++) {

12 double aux1=sqrt(delta)*Z[path][j];

13 T S_t=0.0; T S=0.0;

14 for (int i=j+1;i<n;i++) {

15 double aux2=delta*sigma[i-j-1];

16 S_t+=(aux2/(1+delta*L[i])-delta*aux2*L[i]

17 /((1+delta*L[i])*(1+delta*L[i])))*L_t[i];

18 S+=(aux2*L[i])/(1.0+delta*L[i]);

19 // L[i]=L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2));

20 T t1_t=aux2*exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2))*S_t;

21 T t1=exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2));

22 L_t[i]=L_t[i]*t1+L[i]*t1_t;

23 L[i]=L[i]*t1;

24 }

25 }

26 }

27

28 template <typename T>

29 inline void portfolio_t(

30 const vector<T>& L, const vector<T>& L_t, T& P, T& P_t) {

31 vector<T> B(n),B_t(n),S(n),S_t(n);

32 T b_t=0.0; T b=1.0;

33 T s_t=0.0; T s=0.0;

34 for (int j=m;j<n;j++) {

35 b_t=b_t/(1.0+delta*L[j])-delta*b*L_t[j]

36 /((1.0+delta*L[j])*(1.0+delta*L[j]));

37 b=b/(1.0+delta*L[j]);

38

38 B_t[j]=b_t;

39 B[j]=b;

40 s_t=s_t+delta*b_t;

41 s=s+delta*b;

42 S_t[j]=s_t;

43 S[j]=s;

44 }

45 P_t=0; P=0;

46 for (int i=0;i<no;i++){

47 int j=maturities[i]+m-1;

48 T swapval_t=B_t[j]+swaprates[i]*S_t[j];

49 T swapval=B[j]+swaprates[i]*S[j]-1.0;

50 if (swapval<0) {

51 P_t+=-100.0*swapval_t;

52 P+=-100.0*swapval;

53 }

54 }

55 for (int i=0;i<m;i++) {

56 P_t=P_t/(1.0+delta*L[i])-delta*P*L_t[i]

57 /((1.0+delta*L[i])*(1.0+delta*L[i]));

58 P=P/(1.0+delta*L[i]);

59 }

60 }

61

62 template<typename T>

63 inline void f(const vector<T>& L, const vector<T>& L_t,

64 T& P, T& P_t, const vector<vector<double>>& Z) {

65 T Ps_t=0;

66 T Ps=0;

67 for (int j=0;j<p;j++) {

68 vector<T> Lc_t(L_t);

69 vector<T> Lc(L);

70 path_calc_t(j,Lc,Lc_t,Z);

71 portfolio_t(Lc,Lc_t,P,P_t);

72 Ps_t+=P_t; Ps+=P;

73 }

74 P_t=Ps_t/p; P=Ps/p;

75 }

76

77

78 int main() {

79 vector<double> L(n,0.05); double P=0;

80 vector<double> L_t(n,0); double P_t=0;

81 srand(0); default_random_engine generator(0);

82 normal_distribution<double> distribution(0.0,1.0);

83 vector<vector<double>> Z(p,vector<double>(m));

39

84 for (int k=0;k<n;k++) {

85 generator.seed(0);

86 for (int j=0;j<p;j++)

87 for (int i=0;i<m;i++)

88 Z[j][i]=0.3+distribution(generator);

89 for (int i=0;i<n;i++) { L[i]=0.05; L_t[i]=0.0; }

90 L_t[k]=1.0;

91 f(L,L_t,P,P_t,Z);

92 cout << "dPdL[" << k << "]=" << P_t << endl;

93 }

94 return 0;

95 }

Listing 35: Tangent LIBOR (dco/c++)

1 #include "std_includes.h"

2 #include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::gt1s<double>::type DCO_T;

6

7 int main() {

8 vector<DCO_T> L(n,0.05); DCO_T P=0;

9 srand(0); default_random_engine generator(0);

10 normal_distribution<double> distribution(0.0,1.0);

11 vector<vector<double>> Z(p,vector<double>(m));

12 for (int j=0; j<p;j++)

13 for (int i=0;i<m;i++)

14 Z[j][i]=0.3+distribution(generator);

15 vector<double> dPdL(n,0);

16 for (int i=0;i<n;i++) {

17 dco::derivative(L[i])=1;

18 f(L,P,Z);

19 dco::derivative(L[i])=0;

20 dPdL[i]=dco::derivative(P);

21 }

22 for (int i=0;i<n;i++)

23 cout << "dPdL[" << i << "]=" << dPdL[i] << endl;

24 return 0;

25 }

Listing 36: Vector Tangent LIBOR (dco/c++)

1 #include "std_includes.h"

2 #include "f.h"

3

4 #include "dco.hpp"

40

5 typedef dco::gt1v<double,n>::type DCO_T;

6

7 int main() {

8 vector<DCO_T> L(n,0.05); DCO_T P=0;

9 srand(0); default_random_engine generator(0);

10 normal_distribution<double> distribution(0.0,1.0);

11 vector<vector<double>> Z(p,vector<double>(m));

12 for (int j=0; j<p;j++)

13 for (int i=0;i<m;i++)

14 Z[j][i]=0.3+distribution(generator);

15 for (int i=0;i<n;i++) dco::derivative(L[i])[i]=1;

16 f(L,P,Z);

17 vector<double> dPdL(n,0);

18 for (int i=0;i<n;i++) dPdL[i]=dco::derivative(P)[i];

19 for (int i=0;i<n;i++)

20 cout << "dPdL[" << i << "]=" << dPdL[i] << endl;

21 return 0;

22 }

C.1.2 Adjoints

Listing 37: Adjoint LIBOR (Handwritten)

1 #include "f.h"

2

3 enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

4

5 stack<double> tbr_d;

6 stack<int> tbr_i;

7 stack<int> tbr_f;

8

9 template <typename T>

10 void a_path_calc(

11 Mode mode,

12 vector<T>& L,

13 vector<T>& a_L,

14 const vector<double>& Z

15) {

16 double aux1=0,aux2=0;

17 T S=0, a_S=0;

18 switch (mode) {

19 case AUGMENTED_PRIMAL:

20 for(int j=0;j<m;j++) {

21 tbr_d.push(aux1);

22 aux1=sqrt(delta)*Z[j];

23 tbr_d.push(S);

24 S=0;

41

25 for (int i=j+1;i<n;i++) {

26 tbr_d.push(aux2);

27 aux2=delta*sigma[i-j-1];

28 tbr_d.push(S);

29 S+=(aux2*L[i])/(1.0+delta*L[i]);

30 tbr_d.push(L[i]);

31 L[i]=L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2));

32 }

33 }

34 tbr_d.push(aux1);

35 tbr_d.push(aux2);

36 tbr_d.push(S);

37 break;

38 case SPLIT_ADJOINT:

39 a_S=0;

40 S=tbr_d.top(); tbr_d.pop();

41 aux2=tbr_d.top(); tbr_d.pop();

42 aux1=tbr_d.top(); tbr_d.pop();

43 for(int j=m-1;j>=0;j--) {

44 for (int i=n-1;i>=j+1;i--) {

45 L[i]=tbr_d.top(); tbr_d.pop();

46 a_S+=aux2*L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2))*a_L[i];

47 a_L[i]=exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2))*a_L[i];

48 S=tbr_d.top(); tbr_d.pop();

49 a_L[i]+=(aux2/(1+L[i]*delta)-delta*aux2*L[i]

50 /((1+L[i]*delta)*(1+L[i]*delta)))*a_S;

51 aux2=tbr_d.top(); tbr_d.pop();

52 }

53 a_S=0;

54 S=tbr_d.top(); tbr_d.pop();

55 aux1=tbr_d.top(); tbr_d.pop();

56 }

57 break;

58 }

59 }

60

61 template <typename T>

62 void a_portfolio(

63 Mode mode,

64 const vector<T>& L,

65 vector<T>& a_L,

66 T& P,

67 T& a_P

68) {

69 vector<T> B(n,0),S(n,0);

70 T swapval=0,b=0,s=0;

42

71 T a_swapval=0,a_b=0,a_s=0;

72 vector<T> a_B(n,0),a_S(n,0);

73 switch (mode) {

74 case AUGMENTED_PRIMAL:

75 b=1.0;

76 s=0.0;

77 for (int j=m;j<n;j++) {

78 tbr_d.push(b);

79 b=b/(1.0+delta*L[j]);

80 B[j]=b;

81 s=s+delta*b;

82 S[j]=s;

83 }

84 P=0;

85 for (int i=0;i<no;i++){

86 int j=maturities[i]+m-1;

87 tbr_i.push(j);

88 swapval=B[j]+swaprates[i]*S[j]-1.0;

89 if (swapval<0) {

90 P+=-100.0*swapval;

91 tbr_f.push(1);

92 } else tbr_f.push(0);

93 }

94 for (int i=0;i<m;i++) {

95 tbr_d.push(P);

96 P=P/(1.0+delta*L[i]);

97 }

98 tbr_d.push(b);

99 break;

100 case SPLIT_ADJOINT:

101 b=tbr_d.top(); tbr_d.pop();

102 for (int i=m-1;i>=0;i--) {

103 P=tbr_d.top(); tbr_d.pop();

104 a_L[i]+=-P*a_P*delta/((1.0+delta*L[i])*(1.0+delta*L[i]));

105 a_P=a_P/(1.0+delta*L[i]);

106 }

107 for (int i=no-1;i>=0;i--) {

108 if (tbr_f.top()) a_swapval+=-100.0*a_P;

109 tbr_f.pop();

110 int j=tbr_i.top(); tbr_i.pop();

111 a_B[j]+=a_swapval;

112 a_S[j]+=swaprates[i]*a_swapval; a_swapval=0.0;

113 }

114 a_P=0.0;

115 for (int j=n-1;j>=m;j--) {

116 a_s+=a_S[j]; a_S[j]=0;

43

117 a_b+=delta*a_s;

118 a_b+=a_B[j]; a_B[j]=0;

119 b=tbr_d.top(); tbr_d.pop();

120 a_L[j]+=-delta*b*a_b/((1.0+delta*L[j])*(1.0+delta*L[j]));

121 a_b=a_b/(1.0+delta*L[j]);

122 }

123 a_b=0.0;

124 a_s=0.0;

125 break;

126 }

127 }

128

129 int main() {

130 vector<double> Z(n,0),L(n,0),a_L(n,0),Li(n,0.05),a_Li(n,0);

131 double P=0,a_P=0;

132 default_random_engine generator(0);

133 normal_distribution<double> distribution(0.0,1.0);

134

135 for (int j=0;j<p;j++) {

136 for (int i=0;i<m;i++)

137 Z[i]=0.3+distribution(generator);

138 for (int i=0;i<n;i++) L[i]=Li[i];

139 a_path_calc(AUGMENTED_PRIMAL,L,a_L,Z);

140 a_portfolio(AUGMENTED_PRIMAL,L,a_L,P,a_P);

141 a_P=1.0/p;

142 a_portfolio(SPLIT_ADJOINT,L,a_L,P,a_P);

143 a_path_calc(SPLIT_ADJOINT,L,a_L,Z);

144 for (int i=0;i<n;i++) { a_Li[i]+=a_L[i]; a_L[i]=0; }

145 }

146 for (int i=0;i<n;i++)

147 cout << "dPdL[" << i << "]=" << a_Li[i] << endl;

148 return 0;

149 }

Listing 38: Adjoint LIBOR (dco/c++)

1 #include "std_includes.h"

2 #include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::ga1s<double> DCO_AM;

6 typedef typename DCO_AM::type DCO_A;

7 typedef typename DCO_AM::tape_t DCO_AM_TAPE;

8

9 int main() {

10 vector<DCO_A> L(n,0.05); DCO_A P=0;

11 srand(0); default_random_engine generator(0);

44

12 normal_distribution<double> distribution(0.0,1.0);

13 vector<vector<double>> Z(p,vector<double>(m));

14 for (int j=0; j<p;j++)

15 for (int i=0;i<m;i++)

16 Z[j][i]=0.3+distribution(generator);

17 DCO_AM::global_tape=DCO_AM_TAPE::create();

18 DCO_AM::global_tape->register_variable(L);

19 f(L,P,Z);

20 DCO_AM::global_tape->register_output_variable(P);

21 dco::derivative(P)=1;

22 DCO_AM::global_tape->interpret_adjoint();

23 vector<double> dPdL(dco::derivative(L));

24 cerr << dco::size_of(DCO_AM::global_tape) << "B" << endl;

25 DCO_AM_TAPE::remove(DCO_AM::global_tape);

26 for(int i=0;i<n;i++)

27 cout << "dPdL[" << i << "]=" << dPdL[i] << endl;

28 return 0;

29 }

C.2 Second-Order AD

C.2.1 Tangents

Listing 39: Second-Order Tangent LIBOR (dco/c++)

1 #include "std_includes.h"

2 #include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::gt1s<double>::type DCO_T;

6 typedef dco::gt1s<DCO_T>::type DCO_TT;

7

8 int main() {

9 vector<DCO_TT> L(n,0.05); DCO_TT P=0;

10 srand(0); default_random_engine generator(0);

11 normal_distribution<double> distribution(0.0,1.0);

12 vector<vector<double>> Z(p,vector<double>(m));

13 for (int j=0; j<p;j++)

14 for (int i=0;i<m;i++)

15 Z[j][i]=0.3+distribution(generator);

16 vector<vector<double> > ddPdLL(n,vector<double>(n,0));

17 for (int i=0;i<n;i++) {

18 dco::value(dco::derivative(L[i]))=1;

19 for (int j=0;j<=i;j++) {

20 dco::derivative(dco::value(L[j]))=1;

21 f(L,P,Z);

22 ddPdLL[i][j]=ddPdLL[j][i]=dco::derivative(dco::derivative(P));

45

23 dco::derivative(dco::value(L[j]))=0;

24 }

25 dco::value(dco::derivative(L[i]))=0;

26 }

27 for (int i=0;i<n;i++)

28 for (int j=0;j<n;j++)

29 cout << "ddP/dL[" << i << "]dL[" << j << "]=" << ddPdLL[i][j] << endl;

30 return 0;

31 }

C.2.2 Adjoints

Listing 40: Second-Order Adjoint LIBOR (dco/c++)

1 #include "std_includes.h"

2 #include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::gt1s<double>::type DCO_T;

6 typedef dco::ga1s<DCO_T> DCO_TAM;

7 typedef DCO_TAM::type DCO_TA;

8 typedef DCO_TAM::tape_t DCO_TAM_TAPE;

9

10 int main() {

11 vector<DCO_TA> L(n,0.05); DCO_TA P=0;

12 srand(0); default_random_engine generator(0);

13 normal_distribution<double> distribution(0.0,1.0);

14 vector<vector<double>> Z(p,vector<double>(m));

15 for (int j=0; j<p;j++)

16 for (int i=0;i<m;i++)

17 Z[j][i]=0.3+distribution(generator);

18 DCO_TAM::global_tape=DCO_TAM_TAPE::create();

19 DCO_TAM::global_tape->register_variable(L);

20 DCO_TAM_TAPE::position_t tpos=DCO_TAM::global_tape->get_position();

21 vector<vector<double> > ddPdLL(n,vector<double>(n,0));

22 for(int j=0;j<n;j++) {

23 dco::derivative(dco::value(L[j]))=1;

24 f(L,P,Z);

25 DCO_TAM::global_tape->register_output_variable(P);

26 dco::value(dco::derivative(P))=1;

27 DCO_TAM::global_tape->interpret_adjoint_to(tpos);

28 for(int i=0;i<n;i++) {

29 ddPdLL[i][j]=dco::derivative(dco::derivative(L[i]));

30 dco::derivative(L[i])=0;

31 }

32 dco::derivative(dco::value(L[j]))=0;

33 DCO_TAM::global_tape->reset_to(tpos);

46

34 }

35 DCO_TAM_TAPE::remove(DCO_TAM::global_tape);

36 for (int i=0;i<n;i++)

37 for (int j=0;j<n;j++)

38 cout << "ddP/dL[" << i << "]dL[" << j << "]=" << ddPdLL[i][j] << endl;

39 return 0;

40 }

D Product Reduction

D.1 First-Order AD

D.1.1 Tangents

Listing 41: Tangent Product Reduction (Handwritten)

1 #include "std_includes.h"

2 using namespace std;

3

4 template<typename T>

5 void f_t(const vector<T>& x, const vector<T>& x_t, T& y, T& y_t) {

6 assert(x.size()>0);

7 y_t=x_t[0]; y=x[0];

8 for (size_t i=1;i<x.size();i++) { y_t=y_t*x[i]+y*x_t[i]; y*=x[i]; }

9 }

10

11 void driver(vector<double>& x, double &y, vector<double>& g) {

12 vector<double> x_t(x.size(),0);

13 for (size_t i=0;i<x.size();i++) {

14 x_t[i]=1;

15 f_t(x,x_t,y,g[i]);

16 x_t[i]=0;

17 }

18 }

19

20 int main(int c, char* v[]) {

21 assert(c==2); int n=atoi(v[1]); assert(n>0);

22 vector<double> x(n), g(n); double y;

23 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

24 driver(x,y,g);

25 cout << y << endl;

26 for (int i=0;i<n;i++) cout << g[i] << endl;

27 return 0;

28 }

D.1.2 Adjoints

47

Listing 42: Adjoint Product Reduction (Handwritten)

1 #include "std_includes.h"

2 using namespace std;

3

4 template<typename T>

5 void f_a(const vector<T>& x, vector<T>& x_a, T& y, T& y_a) {

6 assert(x.size()>0);

7 stack<T> tbr;

8 y=x[0];

9 for (size_t i=1;i<x.size();i++) { tbr.push(y); y*=x[i]; }

10 double ys=y;

11 for (size_t i=x.size()-1;i>0;i--) {

12 y=tbr.top(); tbr.pop(); x_a[i]+=y*y_a; y_a=x[i]*y_a;

13 }

14 x_a[0]=y_a; y_a=0;

15 y=ys;

16 }

17

18 void driver(vector<double>& x, double &y, vector<double>& g) {

19 double y_a=1;

20 f_a(x,g,y,y_a);

21 }

22

23 int main(int c, char* v[]) {

24 assert(c==2); int n=atoi(v[1]); assert(n>0);

25 vector<double> x(n), g(n); double y;

26 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

27 driver(x,y,g);

28 cout << y << endl;

29 for (int i=0;i<n;i++) cout << g[i] << endl;

30 return 0;

31 }

D.2 Second-Order AD

D.2.1 Tangents

Listing 43: Second-Order Tangent Product Reduction (Handwritten)

1 #include "std_includes.h"

2 using namespace std;

3

4 template<typename T>

5 void f_tt(

6 const vector<T>& x,

7 const vector<T>& x_t,

8 const vector<T>& xt,

48

9 const vector<T>& xt_t,

10 T& y,

11 T& y_t,

12 T& yt,

13 T& yt_t

14) {

15 assert(x.size()>0);

16 yt_t=xt_t[0];

17 yt=xt[0];

18 y_t=x_t[0];

19 y=x[0];

20 for (size_t i=1;i<x.size();i++) {

21 yt_t=yt_t*x[i]+yt*x_t[i]+y_t*xt[i]+y*xt_t[i];

22 yt=yt*x[i]+y*xt[i];

23 y_t=y_t*x[i]+y*x_t[i];

24 y*=x[i];

25 }

26 }

27

28 void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& H) {

29 vector<double> x_t(x.size(),0);

30 vector<double> xt(x.size(),0);

31 vector<double> xt_t(x.size(),0);

32 double yt, y_t;

33 for (size_t i=0;i<x.size();i++) {

34 xt[i]=1;

35 for (size_t j=0;j<x.size();j++) {

36 x_t[j]=1;

37 f_tt(x,x_t,xt,xt_t,y,y_t,yt,H[i][j]);

38 x_t[j]=0;

39 }

40 g[i]=yt;

41 xt[i]=0;

42 }

43 }

44

45 int main(int c, char* v[]) {

46 assert(c==2); int n=atoi(v[1]); assert(n>0);

47 vector<double> x(n), g(n);

48 double y;

49 vector<vector<double>> H(n,vector<double>(n));

50 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

51 driver(x,y,g,H);

52 cout << y << endl;

53 for (int i=0;i<n;i++) cout << g[i] << endl;

54 for (int i=0;i<n;i++) {

49

55 for (int j=0;j<n;j++) cout << H[i][j] << " ";

56 cout << endl;

57 }

58 return 0;

59 }

D.2.2 Adjoints

Listing 44: Second-Order Adjoint Product Reduction (Handwritten)

1 #include "std_includes.h"

2 using namespace std;

3

4 template<typename T>

5 void f_a_t(

6 const vector<T>& x,

7 const vector<T>& x_t,

8 vector<T>& x_a,

9 vector<T>& x_a_t,

10 T& y,

11 T& y_t,

12 T& y_a,

13 T& y_a_t

14) {

15 assert(x.size()>0);

16 stack<T> tbr_t;

17 stack<T> tbr;

18 y_t=x_t[0];

19 y=x[0];

20 for (size_t i=1;i<x.size();i++) {

21 tbr_t.push(y_t);

22 tbr.push(y);

23 y_t=y_t*x[i]+y*x_t[i];

24 y*=x[i];

25 }

26 double ys_t=y_t;

27 double ys=y;

28 for (size_t i=x.size()-1;i>0;i--) {

29 y_t=tbr_t.top(); tbr_t.pop();

30 y=tbr.top(); tbr.pop();

31 x_a_t[i]+=y_t*y_a+y*y_a_t;

32 x_a[i]+=y*y_a;

33 y_a_t=x_t[i]*y_a+x[i]*y_a_t;

34 y_a=x[i]*y_a;

35 }

36 x_a_t[0]=y_a_t;

37 x_a[0]=y_a;

50

38 y_a_t=0;

39 y_a=0;

40 y_t=ys_t;

41 y=ys;

42 }

43

44 void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& h) {

45 int n=x.size();

46 for (int i=0;i<n;i++) {

47 vector<double> x_t(n,0), x_a(n,0);

48 x_t[i]=1;

49 double y_a=1,y_a_t=0;

50 f_a_t(x,x_t,x_a,h[i],y,g[i],y_a,y_a_t);

51 }

52 }

53

54 int main(int c, char* v[]) {

55 assert(c==2); int n=atoi(v[1]); assert(n>0);

56 vector<double> x(n), g(n);

57 double y;

58 vector<vector<double>> H(n,vector<double>(n));

59 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

60 driver(x,y,g,H);

61 cout << y << endl;

62 for (int i=0;i<n;i++) cout << g[i] << endl;

63 for (int i=0;i<n;i++) {

64 for (int j=0;j<n;j++) cout << H[i][j] << " ";

65 cout << endl;

66 }

67 return 0;

68 }

E Black Scholes PDE (Explicit Time Stepping)

E.1 First-Order AD

E.1.1 Tangents

Listing 45: Tangent Black Scholes PDE (Explicit Time Stepping; dco/c++)

1 # include "std_includes.h"

2 # include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::gt1s<double>::type DCO_T;

6

7 typedef Matrix<DCO_T,Dynamic,1> DCO_VT;

51

8 typedef Matrix<double,Dynamic,1> VT;

9

10

11 VT driver(const VT& u, double e, double r, double sigma, int nt) {

12 int nx=u.size()+1;

13 VT g(nx+2);

14 DCO_VT u_(nx-1);

15 DCO_T e_=e, r_=r, sigma_=sigma;

16 // Delta

17 for (int i=0;i<nx-1;i++) {

18 for (int j=0;j<nx-1;j++) u_[j]=u[j];

19 dco::derivative(u_[i])=1;

20 f(u_,e_,r_,sigma_,nt);

21 g[i]=dco::derivative(u_[(nx-1)/2]);

22 }

23 // ???

24 for (int j=0;j<nx-1;j++) u_[j]=u[j];

25 dco::derivative(e_)=1;

26 f(u_,e_,r_,sigma_,nt);

27 g[nx-1]=dco::derivative(u_[(nx-1)/2]);

28 dco::derivative(e_)=0;

29 // Rho

30 for (int j=0;j<nx-1;j++) u_[j]=u[j];

31 dco::derivative(r_)=1;

32 f(u_,e_,r_,sigma_,nt);

33 g[nx]=dco::derivative(u_[(nx-1)/2]);

34 dco::derivative(r_)=0;

35 // Vega

36 for (int j=0;j<nx-1;j++) u_[j]=u[j];

37 dco::derivative(sigma_)=1;

38 f(u_,e_,r_,sigma_,nt);

39 g[nx+1]=dco::derivative(u_[(nx-1)/2]);

40 return g;

41 }

42

43 int main(int c, char* v[]) {

44 assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);

45 const double e=0.5, r=0.03, sigma=0.5;

46 assert(nt>sigma*sigma*nx*nx);

47 assert(nt>(r*r)/(sigma*sigma));

48 VT u(nx-1); double u0=0;

49 for (int i=0;i<nx-1;i++) { u0=u0+1./nx; u[i]=max(u0-e,0.); }

50 VT greeks=driver(u,e,r,sigma,nt);

51 for (int i=0;i<nx-1;i++)

52 cout << "dVdu0[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;

53 cout << "dVde=" << greeks[nx-1] << endl;

52

54 cout << "dVdr=" << greeks[nx] << endl;

55 cout << "dVdsigma=" << greeks[nx+1] << endl;

56 return 0;

57 }

E.1.2 Adjoints

Listing 46: Adjoint Black Scholes PDE (Explicit Time Stepping; dco/c++)

1 # include "std_includes.h"

2 # include "f.h"

3

4 #include "dco.hpp"

5 typedef dco::ga1s<double> DCO_AM;

6 typedef DCO_AM::type DCO_A;

7 typedef DCO_AM::tape_t DCO_AM_TAPE;

8

9 typedef Matrix<DCO_A,Dynamic,1> DCO_VT;

10 typedef Matrix<double,Dynamic,1> VT;

11

12 VT driver(const VT& u, double e, double r, double sigma, int nt) {

13 int nx=u.size()+1;

14 VT g(nx+2);

15 DCO_VT u0_(nx-1);

16 for (int j=0;j<nx-1;j++) u0_[j]=u[j];

17 DCO_A e_=e, r_=r, sigma_=sigma;

18 DCO_AM::global_tape=DCO_AM_TAPE::create();

19 for (int j=0;j<nx-1;j++)

20 DCO_AM::global_tape->register_variable(u0_[j]);

21 DCO_AM::global_tape->register_variable(e_);

22 DCO_AM::global_tape->register_variable(r_);

23 DCO_AM::global_tape->register_variable(sigma_);

24 DCO_VT u_=u0_;

25 f(u_,e_,r_,sigma_,nt);

26 for (int j=0;j<nx-1;j++)

27 DCO_AM::global_tape->register_output_variable(u_[j]);

28 dco::derivative(u_[(nx-1)/2])=1;

29 DCO_AM::global_tape->interpret_adjoint();

30 // Delta

31 for (int j=0;j<nx-1;j++)

32 g[j]=dco::derivative(u0_[j]);

33 // ???

34 g[nx-1]=dco::derivative(e_);

35 // Rho

36 g[nx]=dco::derivative(r_);

37 // Vega

38 g[nx+1]=dco::derivative(sigma_);

53

39 return g;

40 }

41

42 int main(int c, char* v[]) {

43 assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);

44 const double e=0.5, r=0.03, sigma=0.5;

45 assert(nt>sigma*sigma*nx*nx);

46 assert(nt>(r*r)/(sigma*sigma));

47 VT u(nx-1); double u0=0;

48 for (int i=0;i<nx-1;i++) { u0=u0+1./nx; u[i]=max(u0-e,0.); }

49 VT greeks=driver(u,e,r,sigma,nt);

50 for (int i=0;i<nx-1;i++)

51 cout << "dVdu0[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;

52 cout << "dVde=" << greeks[nx-1] << endl;

53 cout << "dVdr=" << greeks[nx] << endl;

54 cout << "dVdsigma=" << greeks[nx+1] << endl;

55 return 0;

56 }

54

