Algorithmic Differentiation (AD)

Sample Code Collection*

Uwe Naumann

Computer Science, RWTH Aachen University, Germany
Email: naumann@stce.rwth-aachen.de

Contents
1 Primal SDE

2 First-Order AD

2.1 Tangents.
2.2 Adjoints
2.3 Improvements
2.3.1 Vector Tangents
2.3.2 Pathwise Ajoints
2.3.3 Preaccumulation 0L

3 Second-Order AD
3.1 Tangents.
3.2 Adjoints

4 Beyond Black-Box AD
4.1 TImplicit Functionso
4.1.1 Tangentso
4.1.2 Adjointso
4.2 Checkpointing o

A PDE / Explicit Scheme
A1l Tangents.
A2 Adjoints

B PDE / Implicit Scheme
B.l Tangents.o
B.2 Adjoints

*... for use in Risk Training Masterclass, London, 21-22 March 2018.

10

11

12

13

14

15

16

17

18

19

20

C LIBOR

C.1 First-Order AD
C.1.1 Tangents
C.1.2 Adjoints

C.2 Second-Order AD
C.2.1 Tangents
C.22 Adjoints oo

D Product Reduction

D.1 First-Order AD
D.1.1 Tangents
D.1.2 Adjointso

D.2 Second-Order AD
D.2.1 Tangents
D.2.2 Adjoints

E Black Scholes PDE (Explicit Time Stepping)

E.1 First-Order AD,
E.1.1 Tangents
E.1.2 Adjointso

1 Primal SDE

Listing 1: Primal SDE
#ifndef F_H_INCLUDED_

#define F_H_INCLUDED_

#include "std_includes.h"

template<typename AT, typename PT>
void f(AT& x, const vector<AT>& p,
const vector<vector<PT>>& dW) {
int m=dW.size(), n=dW[0].size();
AT s=0, x0=x; PT dt=1./n, t;
for (int j=0;j<m;j++) {
t=0;
for (int i=0;i<n;i++) {

x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t) *sqrt (dt) *dw[j] [i];

t+=dt;
b
s+=x; x=x0;
}

x=s/m;

36
38
38
41
45
45
46

47
47
47
47
48
48
50

21

22

10

11

12

13

14

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

#endif

Listing 2: Primal SDE (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, char*x v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);
double x=1;
const vector<double> p(n,1);

default_random_engine generator;

normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));

for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

f(x,p,dW);
cout << "x=" << x << endl;
return O;

Listing 3: Approximate Tangent SDE

#include "std_includes.h"
#include "f.h"

template<typename T>
vector<T> driver(T& x, vector<T>& p,
const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<T> g(n+1,0);
double x0=x;
f(x,p,dW);
double h=sqrt(DBL_EPSILON) ;
double xp=x0+h;
f(xp,p,dw);
g[0]=(xp-x) /h;
for (int i=0;i<n;i++) {
xp=x0; pl[il+=h; f(xp,p,dW); gli+1]1=(xp-x)/h;
}

return g;

plil-=h;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

11

12

13

14

16

17

18

int main(int c, char* v[]) {
assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

}
2 First-Order AD

2.1 Tangents

Listing 4: Tangent SDE (Handwritten)

#include "std_includes.h"

template<typename T>
void f_t(T& x, T& xt,
const vector<T>& p, vector<T>& pt,
const vector<vector<double>>& dW) {
int m=dW.size(), n=dW[0].size();
T s=0, st=0, x0=x, x0t=xt; double dt=1./n, t;
for (int j=0;j<m;j++) {
t=0;
for (int i=0;i<n;i++) {
xt+=dt*sin(x*t)*pt[i]
+dt*p [i]*t*cos (x*t) *xt
+cos (x*t)*sqrt (dt)*dw[j] [1]*pt [i]
-plil*t*sin(x*t)*sqrt(dt)*dW[j] [i]*xt;
x+=dt*p[i]*sin(x*t)+p[i]l*cos (x*t)*sqrt(dt)*dW[j] [i];
t+=dt;

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

}

st+=xt; s+=x;
xt=x0t; x=x0;
b

xt=st/m; x=s/m;

vector<double> driver(double& x, const vector<double>& p,

}

const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double x0=x, xt=1; vector<double> pt(n,0);
f_t(x,xt,p,pt,dW);
gl0]=xt;
for (int i=0;i<n;i++) {
x=x0; xt=0; ptl[il=1;
f_t(x,xt,p,pt,dW);
gli+1]=xt;
pt[i]1=0;
}

return g;

int main(int c, char*x v[]) {

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

Listing 5: Tangent SDE (dco/c++)

#include "std_includes.h"

3 #include "dco.hpp"
4+ typedef dco::gtls<double>::type DCO_T;

¢ #include "f.h"

s vector<double> driver(double& xv, vector<double>& pv,

9 const vector<vector<double>>& dW) {
10 int n=dW[0] .size();
1 vector<double> g(n+1,0);

12 DCO_T xO0=xv;

13 vector<DCO_T> p(n); dco::value(p)=pv;
14 DCO_T x=x0;

15 dco::derivative(x)=1;

16 f(x,p,dW);

17 gl0]=dco: :derivative(x);

18 for (int i=0;i<n;i++) {

19 x=x0;

20 dco::derivative(p[i]l)=1;
21 f(x,p,dW) H

22 gli+1]=dco: :derivative(x);
23 dco::derivative(p[i])=0;
24 }

25 return g;

26 }

27

2s int main(int c, char* v[]) {
29 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
30

31 const double x0=1;

32 vector<double> p(n,1);

33

34 default_random_engine generator;

35 normal_distribution<double> distribution(0.0,1.0);
36 vector<vector<double>> dW(m,vector<double>(n,1));
37 for (int i=0;i<m;i++)

38 for (int j=0;j<n;j++)

39 dw[i] [jl=distribution(generator);

40

a1 double x=x0;

42 vector<double> g=driver(x,p,dW);
13 cout << "dx/dx0=" << g[0] << endl;

44 for (int i=0;i<n;i++)

45 cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
46 return O;

a7}

2.2 Adjoints

Listing 6: Adjoint SDE (Handwritten)

1 #include "std_includes.h"

3 template<typename T>

1+ void f_a(T& x, T& xa, const vector<T>& p, vector<T>& pa,
5 const vector<vector<double>>& dW) {

6 int m=dW.size(), n=dW[0].size();

7 stack<T> tbr_T; stack<double> tbr_double;

8 // augmented primal

9 T s=0, x0=x; double dt=1./n, t;

10 for (int j=0;j<m;j++) {

11 t=0;

12 for (int i=0;i<n;i++) {
13 tbr_T.push(x);

14 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j] [i];
15 tbr_double.push(t);

16 t+=dt;

17 }

18 s+=x; x=x0;

19 }

20 x=s/m;

21 T y=x;

22 // adjoint
23 T sa=0, x0a=0;

24 sat+=xa/m; xa=0;

25 for (int j=m-1;j>=0;j--) {

26 x0a+=xa; xa=0;

27 xat+=sa;

28 for (int i=n-1;i>=0;i--) {

29 t=tbr_double.top(); tbr_double.pop();

30 x=tbr_T.top(); tbr_T.pop();

31 palil+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW[j] [i])*xa;
32 xa=(1+dt*p[i] *t*cos (xxt) -p[i] *t*sin(x*t)*sqrt (dt) *dW[j] [i]) *xa;
33 }

34 }

35 xa+=x0a; x0a=0;

36 X=y;

37}

39 vector<double> driver(double& x, vector<double>& p,
40 const vector<vector<double>>& dwW) {

41 int n=dW[0] .size();

12 vector<double> g(n+1,0);

57

58

59

60

61

62

63

64

66

10

11

12

13

14

15

16

17

18

19

20

double xa=1; vector<double> pa(n,0);
f_a(x,xa,p,pa,dW);

gl0]l=xa;

for (int i=0;i<n;i++) gli+1]=palil;
return g;

}

int main(int c, char*x v[]) {

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)

for (int j=0;j<n;j++)

dw[i] [jl1=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)

cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

Listing 7: Adjoint SDE (dco/c++)
#include "std_includes.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

#include "f.h"

vector<double> driver (double& xv, vector<double>& pv,

const vector<vector<double>>& dW) {

int n=dW[0].size();

vector<double> g(n+1,0);

DCO_A x0=xv;

vector<DCO_A> p(n); dco::value(p)=pv;

DCO_AM: :global_tape=DCO_AM_TAPE: :create();

DCO_AM: :global_tape->register_variable(x0);

DCO_AM: :global_tape->register_variable(p);

DCO_A x=x0;

f(x,p,dW);

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

3

DCO_AM: :global_tape->register_output_variable(x);
dco: :derivative(x)=1;

DCO_AM: :global_tape->interpret_adjoint();

gl0]=dco: :derivative(x0) ;

for (int i=0;i<n;i++) gli+1]=dco::derivative(p[i]);
DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;

return g;

int main(int c, char*x v[]) {

3

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

const double x0=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

2.3 Improvements

2.3.1 Vector Tangents
See LIBOR.

2.3.2 Pathwise Ajoints

Listing 8: Adjoint SDE: Pathwise Adjoints (Handwritten)

#include "std_includes.h"

enum Mode { PRIMAL, CONTEXT_FREE_JOINT_ADJOINT };

void path(Mode mode, const int n,

double& x, double& xa,
const vector<double>&% p, vector<double>& pa,

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

const vector<double>& dW_j) {
double t=0, dt=1.0/n;
switch (mode) {
case PRIMAL:
for (int i=0;i<n;i++) {
x+=dt*p[i] *sin(x*t)+p[i]
t+=dt;
}
break;
case CONTEXT_FREE_JOINT_ADJO
stack<double> tbr;
// augmented primal
t=0;
for (int i=0;i<n;i++) {
tbr.push(x);
x+=dt*p[i] *sin(x*t)+p[i]

t+=dt;

}

// adjoint

t=1;

for (int i=n-1;i>=0;i--) {
t-=dt;
x=tbr.top(); tbr.pop();
palil+=(dt*sin(x*t)+cos(
xa=(1+dt*p[i] *t*cos (x*t)

}

}
}

void f_a(double& x, double& xa,

const vector<double>& p, vec
const vector<vector<double>>

int m=dW.size(), n=dW[0].size(

// augmented primal

double s=0, x0=x;

for (int j=0;j<m;j++) {
x=x0;
path(PRIMAL,n,x,xa,p,pa,dW[j
s+=X;

}

x=s/m;

double y=x;

// adjoint

double sa=0,x0a=0;

sa+=xa/m; xa=0;

for (int j=m-1;j>=0;j--) {

*xcos (x*t) *sqrt (dt)*dw_j[i];

INT:

*xcos (x*t) *sqrt (dt) *dw_j [i];

x*t)*sqrt (dt)*dW_j [1]) *xa;
—plil*t*sin(x*t)*sqrt(dt)*dW_j[i]) *xa;

tor<double>& pa,
& dw) {

)

1);

10

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

86

87

88

89

}

x=x0; xa+=sa;
path (CONTEXT_FREE_JOINT_ADJOINT,n,x,xa,p,pa,dW[jl);
x0a+=xa; xa=0;

}

xat+=x0a; x0a=0;

X=y;

vector<double> driver(double& x, vector<double>& p,

3

const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double xa=1; vector<double> pa(n,0);
f_a(x,xa,p,pa,dW);
gl0]=xa;
for (int i=0;i<n;i++) gli+1]=palil;
return g;

int main(int c, charx v[]) {

}

assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)

for (int j=0;j<n;j++)

dw[i] [jl=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)

cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

2.3.3 Preaccumulation

Listing 9: Adjoint SDE: Preaccumulation (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM: :type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

11

s template<typename AT, typename PT>

o void f(AT& x, const vector<AT>& p, const vector<vector<PT>>& dW) {
10 int m=dW.size(), n=dW[0] .size();

11 AT s=0, x0O=x; PT dt=1./n, t;

12 for (int j=0;j<m;j++) {

13 DCO_AM: : jacobian_preaccumulator_t jp(dco::tape(x));
14 t=0;

15 jp.start();

16 for (int i=0;i<n;i++) {

17 x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t)*sqrt (dt)*dwW[j] [i];
18 t+=dt;

19 }

20 jp.register_output (x);

21 jp-finish(Q);

22 s+=x; x=x0;

23 }

24 x=s/m;

25}

26

27 vector<double> driver(double& xv, vector<double>& pv,
28 const vector<vector<double>>& dW) {

29 int n=dW[0].size();

30 vector<double> g(n+1,0);

31 DCO_A x0=xv;

32 vector<DCO_A> p(n); dco::value(p)=pv;

33 DCO_AM: :global_tape=DCO_AM_TAPE: :create();

34 DCO_AM: :global_tape->register_variable(x0);

35 DCO_AM: :global_tape->register_variable(p);

36 DCO_A x=x0;

37 f(X,p,dW);

38 DCO_AM: :global_tape->register_output_variable(x);
39 dco::derivative(x)=1;

40 DCO_AM: :global_tape->interpret_adjoint () ;

41 gl0]=dco: :derivative(x0);

42 for (int i=0;i<n;i++) gli+1]=dco::derivative(p[il);
13 DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;

44 return g;

45 }

46

47 int main(int c, char* v[]) {

48 assert(c==3); int m=atoi(v[1]), n=atoi(v[2]);

49

50 const double x0=1;

51 vector<double> p(n,1);

12

58

59

60

61

62

63

64

65

66

11

12

13

14

15

16

18

19

20

21

22

23

24

3

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

double x=x0;
vector<double> g=driver(x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

3 Second-Order AD

3.1 Tangents

Listing 10: Second-Order Tangent SDE (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;
typedef dco::gtls<DCO_T>::type DCO_TT;

#include "f.h"

vector<vector<double>> driver(

double& xv, const vector<double> &pv,
const vector<vector<double>>& dw) {
int n=pv.size();
vector<DCO_TT> p(n); dco::passive_value(p)=pv;
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[i]))=1;
for (int j=0;j<=1i;j++) {
dco: :value(dco: :derivative(p[j]))=1;
DCO_TT x=xv;
f(x,p,dW);
ddxdppl[i] [jl=dco: :derivative(dco: :derivative(x));
dco::value(dco: :derivative(p[j]))=0;
}
dco::derivative(dco: :value(p[i]))=0;

}

13

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

10

11

12

13

14

16

17

18

return ddxdpp;
3

int main(int c, charx v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);

double x=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

vector<vector<double>> ddxdpp=driver(x,p,dW);
for (int i=0;i<n;i++)
for (int j=0;j<=1i;j++)
cout << "ddx/dpp[" << i << "J[" << j << "]="
<< ddxdpp[i] [j] << endl;
return O;

}
3.2 Adjoints

Listing 11: Second-Order Adjoint SDE (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::gtls<double>::type DCO_T;

typedef dco::gals<DCO_T> DCO_TAM;

typedef DCO_TAM::type DCO_TA;

typedef DCO_TAM::tape_t DCO_TAM_TAPE;

typedef DCO_TAM_TAPE::position_t DCO_TAM_TAPE_POS;

#include "f.h"

vector<vector<double>> driver(
double& xv, const vector<double> &pv,
const vector<vector<double>>& dW) {
int n=pv.size();
vector<DCO_TA> p(n); dco::passive_value(p)=pv;
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
DCO_TAM: :global_tape=DCO_TAM_TAPE: :create();

14

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

DCO_TAM: :global_tape->register_variable(p);
DCO_TAM_TAPE_POS tpos=DCO_TAM: :global_tape->get_position();
for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[i]))=1;
DCO_TA x=xv;
f(x,p,dW);
dco::value(dco: :derivative(x))=1;
DCO_TAM: :global_tape->interpret_adjoint_and_reset_to(tpos);
for (int j=0;j<=1i;j++)
ddxdpp[i] [jl=dco: :derivative(dco: :derivative(p[jl));
for (int j=0;j<n;j++) {
dco::derivative(dco: :derivative(p[j]))=0;
dco::value(dco: :derivative(p[j]))=0;
}
dco::derivative(dco::value(p[i]))=0;
}
DCO_TAM_TAPE: :remove (DCO_TAM: :global_tape) ;
return ddxdpp;
¥

int main(int c, char* v[]) {
assert(c==3);
int m=atoi(v[1]), n=atoi(v[2]);

double x=1;
vector<double> p(n,1);

default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl1=distribution(generator);

vector<vector<double>> ddxdpp=driver (x,p,dW);
for (int i=0;i<n;i++)
for (int j=0;j<=1i;j++)
cout << "ddx/dpp[" << i << "J[" << j << "]="
<< ddxdppl[il [j] << endl;
return O;

15

4 Beyond Black-Box AD

4.1 Implicit Functions
4.1.1 Tangents

Listing 12: Algorithmic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>
1+ void f_t(T& xv, T& xt, const T& pv, const T& pt, const T& eps) {
5 while (abs(xv*xv-pv)>eps) {

6 xt+=pt/ (2*%xv) - (3./4.+pv/ (4*xv*xV)) *xt;
7 xv—=(xv*xv-pv) / (2*xV) ;

8 }

o

10

11 int main(int c, char* v[]) {
12 assert(c==2);

13 double pv=atof(v[1]), xv=1;
14 double pt=1, xt=0;

15 const double eps=le-12;

16 f_t(xv,xt,pv,pt,eps);

17 cout << "x=" << xv << endl;

18 cout << "dxdp=" << xt << endl;
19 return O;

20 }

Listing 13: Symbolic Tangent Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>

1+ void f(T& x, const T& p, const T& eps) {

5 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);
6 F

s template<typename T>

o void f_st(const T& xv, T& xt, const T& pt) {
10 xt=pt/ (2*xv) ;

11 }

12

13 int main(int c, charx v[]) {

14 assert(c==2);

15 double pv=atof (v[1]), xv=1;

16 double pt=1, xt=0;

16

17 const double eps=le-12;
18 f(xv,pv,eps);
19 f_st(xv,xt,pt);

20 cout << "x=" << xv << endl;

21 cout << "dxdp=" << xt << endl;
22 return O;

23}

4.1.2 Adjoints

Listing 14: Algorithmic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

3 template<typename T>
1+ void f_a(T& xv, T& xa, const T& pv, T& pa, const T& eps) {
5 stack<T> tbr_T;

6 int i=0;

7 while (abs(xv*xv-pv)>eps) {

8 tbr_T.push(xv);

9 xv—=(xv*xv-pv) / (2*xV) ;

10 i++;

11 }

12 double y=xv;

13 for (int j=0;j<i;j++) {

14 xv=tbr_T.top(); tbr_T.pop();
15 pat=xa/(2*xv) ;

16 xa-=(3./4.+pv/ (4*xv*xv))*xa;
17 }

18 XV=y,;

1}

20

21 int main(int c, char*x v[]) {
22 assert(c==2);

23 double pv=atof(v[1]), xv=1;
24 double pa=0, xa=1;

25 const double eps=le-12;

26 f_a(xv,xa,pv,pa,eps);

27 cout << "x=" << xv << endl;

28 cout << "dxdp=" << pa << endl;
29 return O;

30 }

Listing 15: Symbolic Adjoint Nonlinear Equation (Handwritten)

1 #include "std_includes.h"

2

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10

11

12

13

14

15

16

17

18

19

20

template<typename T>
void f(T& x, const T& p,

const T& eps) {

while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

}

template<typename T>

void f_sa(const T& xv, T& xa, T& pa) {

pat=xa/(2*xv); xa=0;

3

int main(int ¢, charx*x v[]
assert(c==2);

double pv=atof(v[1]), x

double pa=0, xa=1;
const double eps=le-12;
f(xv,pv,eps);
f_sa(xv,xa,pa);

) o

v=1;

cout << "x=" << xv << endl;
cout << "dxdp=" << pa << endl;

return O;

}
4.2 Checkpointing

Listing 16: Adjoint SDE: Pathwise Adjoints with Equidistant Checkpointing

(Handwritten)

#include "std_includes.h"

enum Mode { PRIMAL, CONTEXT_FREE_JOINT_FORWARD, CONTEXT_FREE_JOINT_BACKWARD,

CONTEXT_SENSITIVE_JOINT };

template<typename T>

void steps(Mode mode, int from, int to, T& x, T &xa,
const vector<T>& p, vector<T>& pa,
const vector<double>& dW_j) {

static stack<T> tbr_T;
int n=p.size(); double
switch (mode) {

static stack<double> tbr_d;
dt=1.0/n, t=from*dt;

default: assert(false); break;
case CONTEXT_FREE_JOINT_FORWARD:

tbr_T.push(x); tbr_

d.push(t);

for (int i=from;i<to;i++) {

x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t) *sqrt(dt)*dW_j[i];

t+=dt;
}

break;

18

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

58

59

60

61

62

63

64

65

66

case CONTEXT_FREE_JOINT_BACKWARD:
t=tbr_d.top(); tbr_d.pop(); x=tbr_T.top(); tbr_T.pop(Q);
case CONTEXT_SENSITIVE_JOINT:
for (int i=from;i<to;i++) {
tbr_T.push(x);
x+=dt*p[i] *sin(x*t)+p[i]l*cos (x*t) *sqrt(dt)*dW_j[i];

t+=dt;
}
double y=x;
for (int i=to-1;i>=from;i--) {
t-=dt;
x=tbr_T.top(); tbr_T.pop(Q);
palil+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW_j[i])*xa;
xa=(1+dt*p[i]l*t*cos (x*t)-p[i]l*t*sin(x*t) *sqrt (dt)*dW_j[i]) *xa;
}
X=y;

template<typename T>
void path(Mode mode, const int ncs,
T& x, T& xa, const vector<T>& p, vector<T>& pa,
const vector<double>& dW_j) {
int n=dW_j.size();
double t=0, dt=1.0/n;
switch (mode) {
default: assert(false); break;
case PRIMAL:
for (int i=0;i<n;i++) {
x+=dt*p[i]*sin(x*t)+p[i]l*cos (x*t)*sqrt (dt)*dW_j[i];
t+=dt;
}
break;
case CONTEXT_SENSITIVE_JOINT:
t=0;
for (int i=0;i<n-ncs;i+=ncs)
steps (CONTEXT_FREE_JOINT_FORWARD,i,i+ncs,x,xa,p,pa,dW_j);
steps (CONTEXT_SENSITIVE_JOINT,n-ncs,n,x,xa,p,pa,dW_j);
T y=x;
for (int i=n-2*ncs;i>=0;i-=ncs)
steps (CONTEXT_FREE_JOINT_BACKWARD, i, i+ncs,x,xa,p,pa,dW_j);
X=y;
}
}

void f_a(const int ncs, double& x, double& xa,

19

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

const vector<double>& p, vector<double>& pa,
const vector<vector<double>>& dW) {

int m=dW.size();

// augmented primal

double s=0, x0=x;

for (int j=0;j<m;j++) {
x=x0;
path(PRIMAL,ncs,x,xa,p,pa,dW[jl);
s+=X;

}

x=s/m;

double y=x;

// adjoint

double sa=0,x0a=0;

sa+=xa/m; xa=0;

for (int j=m-1;j>=0;j--) {
x=x0; xa+=sa;
path (CONTEXT_SENSITIVE_JOINT,ncs,x,xa,p,pa,dW[jl);
x0a+=xa; xa=0;

}

xat+=x0a; x0a=0;

X=Y;

}

vector<double> driver(const int ncs, double& x, vector<double>& p,
const vector<vector<double>>& dW) {
int n=dW[0] .size();
vector<double> g(n+1,0);
double xa=1; vector<double> pa(n,0);
f_a(ncs,x,xa,p,pa,dwW);
gl0]=xa;
for (int i=0;i<n;i++) gli+i]l=palil;
return g;

3

int main(int c, char* v[]) {
assert(c==4); int m=atoi(v[1]), n=atoi(v[2]), ncs=atoi(v[3]);
const double x0=1;
vector<double> p(n,1);
default_random_engine generator;
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> dW(m,vector<double>(n,1));
for (int i=0;i<m;i++)
for (int j=0;j<n;j++)
dw[i] [jl=distribution(generator);
double x=x0;

20

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

vector<double> g=driver(ncs,x,p,dW);
cout << "dx/dx0=" << g[0] << endl;
for (int i=0;i<n;i++)
cout << "dx/dp[" << i << "]=" << g[i+1] << endl;
return O;

A PDE / Explicit Scheme

Listing 17: Primal PDE / Explicit Scheme
#ifndef F_H_INCLUDED_

#define __F_H_INCLUDED_
template <typename AT, typename PT>
inline void step(const int m, const vector<PT>& p, vector<AT>& y) {
int n=y.size();
vector<AT> r(n);
AT v=p[0]*(n+1)*(n+1);
r[0]=v*(p[1]-2xy[0]+y[1]);
for (int i=1;i<n-1;i++) rlil=vx(y[i-1]1-2xy[il+y[i+1]);
r[n-1]=v*(y[n-2]-2*y[n-11+p[2]);
for (int i=0;i<n;i++) y[il+=r[i]/m;

template <typename AT, typename PT>

inline void f(const int m, const vector<PT>& p, vector<AT>& y) {
for (int j=0;j<m;j++) step(m,p,y);

}

#endif

Listing 18: Primal PDE / Explicit Scheme (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
vector<double> y(n), p={1le-3,42,0};
for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));
f(m,p,y);
cout << 0 << " " << p[1] << endl;
for (int i=0;i<n;i++)
cout << static_cast<double>(i+1)/(n+1) << " " << y[i] << endl;

21

15

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

cout << 1 << " " << p[2] << endl;
return O;

}
A.1 Tangents

Listing 19: Tangent PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"

template <typename AT, typename PT>

inline void step_t(const int m,
const vector<PT>& p, const vector<PT>& p_t,
vector<AT>& y, vector<AT>& y_t)

int n=y.size();
vector<AT> r(n), r_t(n);
int ns=(n+1)*(n+1);
AT v=p[0]*ns;
r_t[0]=p_t[0]*ns*(p[1]-2xy[0]+y[1])
+vkp_t [1]-v*2+y_t [0]+v*y_t[1];
r[0]=v*x(p[1]-2*y[0]+y[1]);
for (int i=1;i<n-1;i++) {
r_t[il=p_t [0]*ns* (y[i-1]-2*y[i]+y[i+1])
+vky_t[i-1]-v*2xy_t[i]+vxy_t[i+1];
rlil=vx(y[i-1]-2*y[i]+y[i+1]);
}
r_t[n-1]=p_t [0] *ns* (y [n-2] -2xy [n-1]+p[2])
+v*y_t [n-2] -v*2xy_t [n-1]+v*p_t [2] ;
r[n-1]=vx(y[n-2]1-2*y[n-11+p[2]);
for (int i=0;i<n;i++) {
y_t[il+=r_t[i]/m;
y[il+=r[i]l/m;
}
+

template <typename AT, typename PT>
inline void f_t(const int m,
const vector<PT>& p, const vector<PT>& p_t,
vector<AT>& y, vector<AT>& y_t)
{
for (int j=0;j<m;j++) step_t(m,p,p_t,y,y_t);
}

int main(int c, char* v[]) {
cout.precision(15);
assert(c==3);

22

40

41

42

43

44

45

46

47

48

49

50

51

52

10

11

12

13

14

15

16

17

18

19

int n=atoi(v[1]), m=atoi(v[2]);
vector<double> y(n), y_t(n);
vector<double> p={1e-3,42,0}, p_t(3,0);
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) {
y[i]l=(i+1)*log(static_cast<double>(i+2));
y_t[i]=0;
}
y_tl[jl=1;
f_t(m,p,p_t,y,y_t);
cout << "dy(n/2)/dyO[" << j << "]=" << y_t[n/2] << endl;
¥

return O;

Listing 20: Tangent PDE / Explicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

#include "f.h"

int main(int argc, char* argv([]){
assert (argc==3);
int n=atoi(argv([1]), m=atoi(argv[2]);
vector<DCO_T> y(n), p={1e-3,42,0};
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y[i]=(i+1)*log(static_cast<double>(i+2));
dco::derivative(y[j]1)=1;
f(m,p,y);
cout << "dy(n/2)/dyO[" << j << "]=" << dco::derivative(y[n/2]) << endl;
}

return O;

3
A.2 Adjoints

Listing 21: Adjoint PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"
enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename AT, typename PT>
inline void step_a(Mode mode, const int m,

23

7 const vector<PT>& p, vector<PT>& p_a,
8 vector<AT>& y, vector<AT>& y_a)

o {

10 int n=y.size();

11 static stack<vector<AT>> tbr;
12 vector<AT> r(n), r_a(n,0);

13 int ns=(n+1)*(n+1); AT v=p[0]*ns;
14 switch (mode) {
15 case AUGMENTED_PRIMAL:

16 r[0]=v*(p[1]-2xy [0]+y[1]);

17 for (int i=1;i<n-1;i++)

18 rli]=vx(y[i-1]-2*y[i]l+y[i+1]);

10 r[n-1]=v*(y[n-2]-2*y[n-1]1+p[2]1);

20 tbr.push(y);

21 for (int i=0;i<n;i++) y[il+=r[i]/m;

22 break;

23 case SPLIT_ADJOINT:

24 y=tbr.top(); tbr.pop(Q);

25 for (int i=0;i<n;i++) r_alil+=y_alil/m;

26 p_al0]l+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

27 p_alil+=v*r_a[0]; y_al[0]-=v*2xr_a[0];

28 y_al1l+=v*r_al[0]; r_a[0]=0;

20 for (int i=1;i<n-1;i++) {

30 p_al0l+=ns*(y[i-1]1-2xy[i]+y[i+1])*r_a[i];
31 y_ali-1]+=v*r_alil; y_ali]-=v*2*r_al[i];
32 y_ali+1]l+=v*r_al[il; r_al[i]=0;

33 }

34 p_al0]+=ns*(y[n-2]-2*y[n-1]+p[2]) *r_a[n-1];
35 y_a[n-2]+=v*r_al[n-1]; y_aln-1]-=v*2*r_a[n-1];
36 p_al2]l+=v*r_a[n-1]; r_a[n-1]1=0;

37 break;

38 }

39 }

40
11 template <typename AT, typename PT>
42 inline void f_a(const int m,

43 const vector<PT>& p, vector<PT>& p_a,
44 vector<AT>& y, vector<AT>& y_a)
45 {

46 for (int j=0;j<m;j++) step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
a7 for (int j=0;j<m;j++) step_a(SPLIT_ADJOINT,m,p,p_a,y,y_-a);

48 }

49

50 int main(int ¢, char* v[]) {

51 cout.precision(15);

52 assert (c==3);

24

58

59

60

61

62

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

int n=atoi(v[1]), m=atoi(v[2])
vector<double> y(n), y_a(n,0);

for (int i=0;i<n;i++) y[i]l=(i+1)*log(static_cast<double>(i+2));
vector<double> p={1e-3,42,0}, p_a(3,0);

y_al[n/2]=1;
f_a(m,p,p_a,y,y_a);
for (int i=0;i<n;i++)

cout << "dy(n/2)/dy0o[" << i
return O;

Listing 22: Adjoint PDE / Explicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef double DCO_BT;

’

<< "]=" << y_a[i] << endl;

typedef dco::galsm<DCO_BT> DCO_AM;

typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

#include "f.h"

int main(int ¢, char*x v[]){

assert(c==3); int n=atoi(v[1]), m=atoi(v[2]);

vector<DCO_A> yO(n), p={1e-3,42,0};

for (int i=0;i<n;i++) yO0[il=(i+1)*log(static_cast<double>(i+2));
:create();

DCO_AM_TAPE* tape=DCO_AM_TAPE:
tape->register_variable(y0);
vector<DCO_A> y=yO0;

f(m,p,y);

tape->register_output_variable(y);

dco::derivative(y[n/2])=1.;
tape->interpret_adjoint();
for(int i=0;i<n;i++)

cout << "dy(n/2)/dy0o[" << i
DCO_AM_TAPE: :remove (tape) ;
return O;

Listing 23: Adjoint PDE / Explicit Scheme with Equidistant Checkpointing

(Handwritten)

#include "std_includes.h"

#include "Eigen/Dense"
using namespace Eigen;

<< "]=" << dco::derivative(y0[i]) << endl;

25

¢ enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

s template <typename AT, typename PT>
9 inline void step_a(Mode mode, const int m,

10 const vector<PT>& p, vector<PT>& p_a,
1 vector<AT>& y, vector<AT>& y_a)

12 {

13 int n=y.size();

14 static stack<vector<AT>> tbr;

15 vector<AT> r(n), r_a(n,0);

16 int ns=(n+1)*(n+1); AT v=p[0]*ns;
17 switch (mode) {
18 case PRIMAL:

19 r[0]=v*x(p[1]-2%y[0]+y[1]);

20 for (int i=1;i<n-1;i++)

21 rlil=vx(y[i-1]-2*y[i]+y[i+1]);

22 r[n-1]=v*(y[n-2]-2*y [n-1]+p[2]);

23 for (int i=0;i<n;i++) y[i]l+=r[il/m;

24 break;

25 case AUGMENTED_PRIMAL:

26 r[0]=vx(p[1]-2*y[0]+y[1]);

27 for (int i=1;i<n-1;i++)

28 r[1] =Vk (y [1_1] —Q*Y[l] +y [1+1]) 5

29 r[n-1]=v*(y[n-2]-2*y[n-1]1+p[2]);

30 tbr.push(y);

31 for (int i=0;i<n;i++) y[il+=r[il/m;

32 break;

33 case SPLIT_ADJOINT:

34 y=tbr.top(); tbr.pop();

35 for (int i=0;i<n;i++) r_al[il+=y_al[i]/m;
36 p_al0]l+=ns*(p[1]-2*y[0]+y[1])*r_a[0];

a7 p_alil+=v*r_a[0]; y_al[0]-=v*2xr_a[0];

38 y_al1l+=v*r_a[0]; r_a[0]=0;

39 for (int i=1;i<n-1;i++) {

10 p_al0]+=ns*(y[i-1]1-2*y[il+y[i+1])*r_al[il;
a1 y_ali-1]+=vxr_ali]; y_ali]-=v*2*r_a[i];
a2 y_ali+1]+=v¥r_alil; r_al[il=0;

43 }

41 p_al0]+=ns*(y[n-2]-2*y[n-1]+p[2])*r_a[n-1];
15 y_a[n-2]+=v*r_a[n-1]; y_aln-1]-=v*2*r_a[n-1];
16 p_al2]l+=v*r_a[n-1]; r_a[n-1]1=0;

a7 break;

48 }

49 }

26

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

template <typename AT, typename PT>
inline void f_a(const int m, const int ncs,

{

}

const vector<PT>& p, vector<PT>& p_a,
vector<AT>& y, vector<AT>& y_a)

stack<vector<AT>> cp;
for (int j=0;j<m-ncs;j+=ncs) {
cp.push(y);
for (int i=0;i<ncs;i++)
step_a(PRIMAL,m,p,p_a,y,y_a);
}
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,p_a,y,y_2a);
for (int j=0;j<m-ncs;j+=ncs) {
y=cp.top(); cp.pop();
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,p_a,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,p_a,y,y_a);
}

int main(int c, charx v[]) {

}

assert(c==4);
int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]);
vector<double> y(n), y_a(n,0);
for (int i=0;i<n;i++) y[il=(i+1)*log(static_cast<double>(i+2));
vector<double> p={1e-3,42,0}, p_a(3,0);
y_al[n/2]=1;
f_a(m,ncs,p,p_a,y,y_a);
for (int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a[i] << endl;
return O;

B PDE / Implicit Scheme

Listing 24: Primal PDE / Implicit Scheme

#ifndef F_H_INCLUDED_

#define __F_H_INCLUDED_

#include <Eigen/LU>
using namespace Eigen;

27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

46

47

48

49

50

// Ths of ode
template <typename T, int N=Dynamic>
inline void g(const Matrix<T,3,1>& p, const Matrix<T,N,1>& y,
Matrix<T,N,1>& r) {
int n=y.size();
for (int i=0;i<n;i++) {
r(1)=p(0)*(n+1)*(n+1);
if (i==0)
(1) *=p(1)-2xy (i) +y(i+1);
else if (i==n-1)
r(1)*=y(i-1)-2*xy(i)+p(2);
else
r(i)*=y(i-1)-2xy (i) +y(i+1);
}
}

// tangent of rThs of ode
template <typename T, int N=Dynamic>
inline void g_t(const Matrix<T,3,1>%& p, const Matrix<T,N,1>& y,
const Matrix<T,N,1>& y_t, Matrix<T,N,1>& r_t) {
int n=y.size();
for (int i=0;i<n;i++) {
r_t(i)=p(0)*(n+1)*(n+1);
if (i==0)
r_t(i)*=-2xy_t(i)+y_t(i+1);
else if (i==n-1)
r_t(i)*=y_t(i-1)-2xy_t(i);
else
r_t(i)*=y_t(i-1)-2*xy_t (L) +y_t (i+1);
}
}

// Jacobian of rhs of ode
template <typename T, int N=Dynamic>
inline void dgdy(const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {
int n=y.size();
Matrix<T,N,1> r=Matrix<T,N,1>::Zero(n), r_t=Matrix<T,N,1>::Zero(n);
for (int i=0;i<n;i++) {
Matrix<T,N,1> y_t=Matrix<T,N,1>::Zero(n);
y_t(i)=1;
g_t(p,y,y_t,r_t);
if (i>0) A(i,i-D=r_t@E-1);
A(i,i)=r_t(i);
if (i<n-1) A(i,i+1)=r_t(i+1);

28

60

61

62

63

64

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

template <typename T, int N=Dynamic>
inline void dfdy(const int m, const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, Matrix<T,N,N>& A) {

int n=y.size();
dgdy (p,y,A);

A=Matrix<T,N,N>::Identity(n,n)-A/m;

}

// residual of nls

template <typename T, int N=Dynamic>
inline void f(const int m, const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y, const Matrix<T,N,1>& y_prev,

Matrix<T,N,1>& 1)
g(p,y,r); r=y-y_prev-r/m;
}

// Newton solver for nls

template <typename T, int N=Dynamic>
const Matrix<T,3,1>& p,
const Matrix<T,N,1>& y_prev, Matrix<T,N,1>& y) {

inline void newton(const int m,

int n=y.size();
const double eps=le-12;

Matrix<T,N,N> A=Matrix<T,N,N>:

Matrix<T,N,1> r=Matrix<T,N,1>

f(m,p,y,y_prev,r);

while (r.norm()>eps) {
dfdy(m,p,y,A);
PartialPivLU<Matrix<T,N,N>>
y-=LU.solve(r);
f(m,p,y,y_prev,r);

}

}

// implicit Euler integration

template <typename T, int N=Dynamic>
inline void f(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y) {

for (int j=0;j<m;j++) {
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
}
}

#endif

{

:Zero(n,n);
:Zero(n);

LU ;

29

1

2

10

11

12

13

14

16

10

11

12

13

14

15

16

17

18

19

20

21

22

Listing 25: Primal PDE / Implicit Scheme (Driver)

#include "std_includes.h"
#include "f.h"

int main(int c, charx v[]){
assert (c==3) ;
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p(3); p(0)=1le-4; p(1)=42; p(2)=0;

f(m,p,y);
cout << 0 << " " << p(1) << endl;
for (int i=0;i<n;i++)
cout << static_cast<double>(i+1)/(n+1) << " " << y(i) << endl;
cout << 1 << " " << p(2) << endl;
return O;

}
B.1 Tangents

Listing 26: Symbolic Tangent PDE / Implicit Scheme (Handwritten)

#include "std_includes.h"
#include "f.h"

template <typename T, int N=Dynamic>
inline void step_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_t) {
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
dfdy(m,p,y,A);
PartialPivLU<Matrix<T,N,N>> LU(A);
y_t=LU.solve(y_t);

template <typename T, int N=Dynamic>
inline void f_t(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_t) {
for (int j=0;j<m;j++) step_t(m,p,y,y_t);
}

int main(int c, char*x v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);

30

25

26

27

28

29

30

31

32

33

34

35

36

10

11

12

13

14

16

17

18

19

20

Matrix<double,Dynamic,1> y=Matrix<double,Dynamic,1>::Zero(n);
Matrix<double,3,1> p=Matrix<double,3,1>::Zero(3);
p(0)=1e-3; p(1)=42; p(2)=0;
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,Dynamic,1> y_t=Matrix<double,Dynamic,1>::Zero(n);
y_t(3)=1;
f_t(m,p,y,y_t);
cout << "dy(n/2)/dy0[" << j << "]=" << y_t(n/2) << endl;
}

return O;

Listing 27: Algorithmic Tangent PDE / Implicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

#include "f.h"

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<DCO_T,Dynamic,1> y(n);
Matrix<DCO_T,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
for (int j=0;j<n;j++) {
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
dco::derivative(y(j))=1;
f(m,p,y);
cout << "dy(n/2)/dy0[" << j << "]=" << dco::derivative(y(n/2)) << endl;
}
return O;

}
B.2 Adjoints

Listing 28: Algorithmic Adjoint PDE / Implicit Scheme (dco/c++)

#include "std_includes.h"

#include "dco.hpp"

typedef dco::galsm<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

31

s #include "f.h"

9

10 int main(int c, charx v[]){

11 assert(c==3);

12 int n=atoi(v[1]), m=atoi(v[2]);

13 Matrix<DCO_A,Dynamic,1> yO=Matrix<DCO_A,Dynamic,1>::Zero(n);
14 for (int i=0;i<n;i++) y0(i)=(i+1)*log(static_cast<double>(i+2));
15 Matrix<DCO_A,3,1> p=Matrix<DCO_A,3,1>::Zero(3);

16 p(0)=1e-3; p(1)=42; p(2)=0;

17 DCO_AM_TAPE* tape=DCO_AM_TAPE: :create();

18 for(int i=0;i<n;i++) tape->register_variable(y0(i));

19 Matrix<DCO_A,Dynamic,1> y=y0;

20 f(m,p,y);

21 for(int i=0;i<n;i++) tape->register_output_variable(y(i));

22 dco::derivative(y(n/2))=1.;

23 tape->interpret_adjoint();

24 for(int i=0;i<n;i++)

25 cout << "dy(n/2)/dyO[" << i << "]=" << dco::derivative(y0(i)) << endl;
26 DCO_AM_TAPE: :remove (tape) ;

27 return O;

28 }

Listing 29: Algorithmic Adjoint PDE with Symbolic Adjoint Nonlinear Euler
System (Handwritten)

1 #include "std_includes.h"
2 #include "f.h"

4+ enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

¢ template <typename T, int N=Dynamic>
7 inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,

s Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
9 static stack<Matrix<T,N,1>> psols;
10 int n=y.size();

11 Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
12 switch (mode) {
13 case AUGMENTED_PRIMAL: {

14 Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);
15 y_prev=y;

16 newton(m,p,y_prev,y);

17 psols.push(y);

18 break;

19 }

20 case SPLIT_ADJOINT: {

21 y=psols.top(); psols.pop();

22 dfdy(m,p,y,A);

32

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

12

13

14

PartialPivLU<Matrix<T,N,N>> LU(A.transpose());
y_a=LU.solve(y_a);
break;

(-

template <typename T, int N=Dynamic>
inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>& y_a) {
for (int j=0;j<m;j++)
step_a(AUGMENTED_PRIMAL,m,p,y,y_a);
for (int j=0;j<m;j++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
}

int main(int c, char* v[]){
assert(c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,p,y,y_a);
for(int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

3

Listing 30: Symbolic Adjoint PDE / Implicit Scheme with Equidistant Check-
pointing (Handwritten)

#include "std_includes.h"

#include "f.h"

enum Mode { PRIMAL, AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename T, int N=Dynamic>
inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> psols;
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
switch (mode) {
case PRIMAL: {
Matrix<T,N,1> y_prev=y;

33

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

55

56

57

58

59

60

newton(m,p,y_prev,y);
break;

}

case AUGMENTED_PRIMAL: {
Matrix<T,N,1> y_prev=y;
newton(m,p,y_prev,y);
psols.push(y);
break;

}

case SPLIT_ADJOINT: {
y=psols.top(); psols.pop();
dfdy (m,p,y,A);
PartialPivLU<Matrix<T,N,N>> LU(A.transpose());
y_a=-LU.solve(-y_a);
break;

template <typename T, int N=Dynamic>
inline void f_a(const int m, const int ncs, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> cp;
for (int j=0;j<m-ncs;j+=ncs) {
cp.push(y);
for (int i=0;i<ncs;i++)
step_a(PRIMAL,m,p,y,y_a);
}
for (int i=0;i<ncs;i++)
step_a(AUGMENTED_PRIMAL,m,p,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
for (int j=0;j<m-ncs;j+=ncs) {
y=cp.top(); cp.pop();
for (int i=0;i<ncs;i++)
step_a (AUGMENTED_PRIMAL,m,p,y,y_a);
for (int i=0;i<ncs;i++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);
}
}

int main(int c, char* v[]){
assert(c==4);
int n=atoi(v[1]), m=atoi(v[2]), ncs=atoi(v[3]); assert(m)ncs==0);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));

34

61

62

63

64

65

66

67

68

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<double,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,ncs,p,y,y_a);
for(int i=0;i<n;i++)

cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

Listing 31: Symbolic Adjoint PDE / Explicit Scheme (Handwritten)

#include "std_includes.h"
#include "f.h"

enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

template <typename T, int N=Dynamic>
inline void step_a(Mode mode, const int m, const Matrix<T,3,1>& p,
Matrix<T,N,1>& y, Matrix<T,N,1>& y_a) {
static stack<Matrix<T,N,1>> psols;
int n=y.size();
Matrix<T,N,N> A=Matrix<T,N,N>::Zero(n,n);
switch (mode) {
case AUGMENTED_PRIMAL: {
Matrix<T,N,1> y_prev=Matrix<T,N,1>::Zero(n);
y-prevsy;
newton(m,p,y_prev,y);
psols.push(y);
break;
}
case SPLIT_ADJOINT: {
y=psols.top(); psols.popQ);
dgdy(p,y,A);
y_a=y_a+A.transpose () *y_a/m;
break;

-

template <typename T, int N=Dynamic>
inline void f_a(const int m, const Matrix<T,3,1>& p, Matrix<T,N,1>& y,
Matrix<T,N,1>%& y_a) {
for (int j=0;j<m;j++)
step_a (AUGMENTED_PRIMAL,m,p,y,y_a);
for (int j=0;j<m;j++)
step_a(SPLIT_ADJOINT,m,p,y,y_a);

35

37

39

40

41

42

43

44

45

46

47

48

49

10

11

12

13

14

15

16

22

23

24

25

26

27

int main(int ¢, char*x v[]){
assert (c==3);
int n=atoi(v[1]), m=atoi(v[2]);
Matrix<double,Dynamic,1> y(n);
for (int i=0;i<n;i++) y(i)=(i+1)*log(static_cast<double>(i+2));
Matrix<double,3,1> p; p(0)=1e-3; p(1)=42; p(2)=0;
Matrix<double,Dynamic,1> y_a=Matrix<doub1e,Dynamic,1>::Zero(n);
y_a(n/2)=1;
f_a(m,p,y,y_a);
for(int i=0;i<n;i++)
cout << "dy(n/2)/dyO[" << i << "]=" << y_a(i) << endl;
return O;

¥
C LIBOR

Listing 32: Primal LIBOR

#include "std_includes.h"

const int p=10;
const int m=40;
const int n=m+40;
const int no=15;

const double delta=0.25;

const vector<int> maturities({4,4,4,8,8,8,20,20,20,28,28,28,40,40,40});

const vector<double> swaprates({.045,.05,.055,.045,.05,.055,.045, .05,
.055,.045, .05, .055,.045, .05, .055}) ;

const vector<double> sigma(n,0.2);

template <typename T>
inline void path_calc(
const int path,
vector<T>& L,
const vector<vector<double>>& Z
) {
for(int j=0;j<m;j++) {
double auxl=sqrt(delta)*Z[path] [j];
T S=0.0;
for (int i=j+1;i<n;i++) {
double aux2=deltax*sigmali-j-1];
S+=(aux2*L[i])/(1.0+deltaxL[i]);
L[i]=L[i]*exp(aux2*S+sigmal[i-j-1]*(aux1-0.5*%aux2));
}

36

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

46

47

48

49

50

52

53

54

55

56

58

59

10

11

12

template <typename T>

inline void portfolio(const vector<T>& L, T& P) {

vector<T> B(n),S(n);

T b=1.0;

T s=0.0;

for (int j=m;j<n;j++) {

b=b/(1.0+delta*L[j]); B[jl=b;

s=s+delta*b; S[jl=s;

¥

P=0;

for (int i=0;i<no;i++){
int j=maturities[i]+m-1;

T swapval=B[j]+swaprates[i]*S[j]1-1.0;
if (swapval<0) P+=-100.0*swapval;

}

for (int i=0;i<m;i++) P=P/(1.0+deltaxL[i]);

template<typename T>

inline void f(const vector<T>&% L, T& P, const

T Ps=0;

for (int j=0;j<p;j++) {
vector<T> Lc(L);
path_calc(j,Lc,Z);
portfolio(Lc,P);
Ps+=P;

}

P=Ps/p;

}

vector<vector<double>>& Z) {

Listing 33: Primal LIBOR, (Driver)

#include "std_includes.h"
#include "f.h"

int main() {

vector<double> L(n,0.05); double P=0;

srand(0); default_random_engine generator (0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m));

for (int j=0; j<p;j++)
for (int i=0;i<m;i++)

Z[j]1[i]=0.3+distribution(generator) ;

£(L,P,2);

37

13

14

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

cout << "P=" << P << endl;
return O;

}
C.1 First-Order AD
C.1.1 Tangents

Listing 34: Tangent LIBOR (Handwritten)

#include "std_includes.h"
#include "f.h"

template <typename T>

inline void path_calc_t(
const int path,
vector<T>& L,
vector<T>& L_t,

const vector<vector<double>>& Z

) o
for(int j=0;j<m;j++) {

double auxl=sqrt(delta)*Z[path]l[j];

T S_t=0.0; T S=0.0;
for (int i=j+1;i<n;i++) {

double aux2=delta*sigmali-j-1];

S_t+=(aux2/(1+deltaxL[i])-delta*aux2*L[i]
/((1+delta*L[i])*(1+deltaxL[1])))*L_t[i];

S+=(aux2*L[i])/(1.0+deltaxL[i]);

// L[i]=L[%i]*exp (aux2*S+sigma[i-j-1]* (auzl1-0.5*aux2));

T t1_t=aux2*exp(aux2*S+sigmali-j-1]*(auxl-0.5%aux2))*S_t;

T tl=exp(aux2*S+sigmali-j-1]*(aux1-0.5%aux2));

L_t[il=L_t[il*t1+L[i]*t1_t;

L[i]=L[il*t1;

template <typename T>
inline void portfolio_t(

const vector<T>& L, const vector<T>& L_t, T& P, T& P_t) {
vector<T> B(n),B_t(n),S(n),S_t(n);

T b_t=0.0; T b=1.0;
T s_t=0.0; T s=0.0;
for (int j=m;j<n;j++) {

b_t=b_t/(1.0+delta*L[j])-delta*b*L_t[j]
/((1.0+deltaxL[j]1)*(1.0+delta*L[j]));

b=b/(1.0+delta*L[j]);

38

38 B_t [J] =b_t;

39 B[jl=b;

40 s_t=s_t+deltaxb_t;

41 s=s+deltaxb;

42 S_t [j]=S_t;

43 S[j]=s;

44 }

45 P_t=0; P=0;

16 for (int i=0;i<no;i++){

a7 int j=maturities[i]+m-1;

18 T swapval_t=B_t[j]l+swaprates[il*S_t[j];
49 T swapval=B[j]l+swaprates[i]l*S[j]1-1.0;
50 if (swapval<0) {

51 P_t+=-100.0*swapval_t;

52 P+=-100.0*swapval;

53 }

54 }

55 for (int i=0;i<m;i++) {

56 P_t=P_t/(1.0+delta*L[i])-delta*P*L_t[i]
57 /((1.0+delta*L[i])*(1.0+delta*L[i]));
58 P=P/(1.0+delta*L[i]);

59 }

60 }

61
62 template<typename T>
63 inline void f(const vector<T>& L, const vector<T>& L_t,

64 T& P, T& P_t, const vector<vector<double>>& Z) {
65 T Ps_t=0;

66 T Ps=0;

67 for (int j=0;j<p;j++) {

68 vector<T> Lc_t(L_t);

69 vector<T> Lc(L);

70 path_calc_t(j,Lc,Lec_t,2);
71 portfolio_t(Lc,Lc_t,P,P_t);
72 Ps_t+=P_t; Ps+=P;

73 }

74 P_t=Ps_t/p; P=Ps/p;

75 }

76

7T

7s int main() {

70 vector<double> L(n,0.05); double P=0;
80 vector<double> L_t(n,0); double P_t=0;

81 srand(0) ; default_random_engine generator(0);
82 normal_distribution<double> distribution(0.0,1.0);
83 vector<vector<double>> Z(p,vector<double>(m)) ;

39

84

86

87

88

89

90

91

92

93

94

95

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

for (int k=0;k<n;k++) {

gene

rator.seed(0);

for (int j=0;j<p;j++)

for (int i=0;i<m;i++)
Z[j1[i]=0.3+distribution(generator);
for (int i=0;i<n;i++) { L[i]=0.05; L_t[i]=0.0; }

L_t[
£(L,

cout << "dPAL[" << k << "]=" << P_t << endl;

}

return

#include
#include

#include

typedef dco::gtls<double>::type DCO_T;

int main

vector<DCO_T> L(n,0.05); DCO_T P=0;

srand(0); default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;

k]=1.0;
L_t,P,P_t,Z);

0;

Listing 35: Tangent LIBOR (dco/c++)

"std_includes.

llf .hll

"dco.hpp"

O {

hll

for (int j=0; j<p;j++)
for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);
vector<double> dPdL(n,0);
for (int i=0;i<n;i++) {
dco: :derivative(L[i])=1;

f£(L,

dco::derivative(L[i])=0;
dPdL[i]=dco: :derivative(P);

}

for (int i=0;i<n;i++)
cout << "dPAL[" << i << "]=" << dPdL[i] << endl;

return

#include
#include

#include

P,Z);

0;

Listing 36: Vector Tangent LIBOR, (dco/c++)
'hll

"std_includes
llf .hll

"dco.hpp"

40

10

11

12

13

14

15

16

17

18

19

20

21

22

10

11

12

13

14

16

17

19

20

21

22

23

24

typedef dco::gtlv<double,n>::type DCO_T;

int main() {

3

vector<DCO_T> L(n,0.05); DCO_T P=0;
srand(0); default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)

for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);

for (int i=0;i<n;i++) dco::derivative(L[i]) [i]=1;
f(L,P,Z);
vector<double> dPdL(n,0);
for (int i=0;i<n;i++) dPdL[i]=dco::derivative(P) [i];
for (int i=0;i<n;i++)

cout << "dPAL[" << i << "]=" << dPdL[i] << endl;
return O;

C.1.2 Adjoints

Listing 37: Adjoint LIBOR (Handwritten)

#include "f.h"

enum Mode { AUGMENTED_PRIMAL, SPLIT_ADJOINT };

stack<double> tbr_d;
stack<int> tbr_i;
stack<int> tbr_f;

template <typename T>
void a_path_calc(

)

Mode mode,
vector<T>& L,
vector<T>& a_L,
const vector<double>& Z
{
double aux1=0,aux2=0;
T S=0, a_S=0;
switch (mode) {
case AUGMENTED_PRIMAL:
for(int j=0;j<m;j++) {
tbr_d.push(auxl);
auxl=sqrt(delta)*Z[j];
tbr_d.push(S);
S=0;

41

25 for (int i=j+1;i<n;i++) {

26 tbr_d.push(aux2);

27 aux2=delta*sigmal[i-j-1];

28 tbr_d.push(S);

20 S+=(aux2*L[i])/(1.0+delta*xL[i]);

30 tbr_d.push(L[i]);

31 L[i]=L[i]*exp(aux2*S+sigma[i-j-1]*(aux1-0.5%aux2));
32 }

34 tbr_d.push(auxl);

35 tbr_d.push(aux2);

36 tbr_d.push(S);

37 break;

38 case SPLIT_ADJOINT:

39 a_S=O;

10 S=tbr_d.top(); tbr_d.pop();

a aux2=tbr_d.top(); tbr_d.pop(Q);

42 auxl=tbr_d.top(); tbr_d.pop();

143 for(int j=m-1;j>=0;j--) {

44 for (int i=n-1;i>=j+1;i--) {

15 L[il=tbr_d.top(); tbr_d.pop();

46 a_S+=aux2+L[i] *exp(aux2*S+sigma[i-j-1]*(aux1-0.5*aux2))*a_L[i];
a7 a_L[i]=exp(aux2*S+sigma[i-j-1]*(auxl-0.5%aux2))*a_L[i];
as S=tbr_d.top(); tbr_d.pop(Q);

49 a_L[i]+=(aux2/(1+L[i]*delta)-delta*aux2*L[i]
50 /((1+L[i]*delta) * (1+L[i]*delta)))*a_S;
51 aux2=tbr_d.top(); tbr_d.pop(Q);

52 }

53 a_S=0;

54 S=tbr_d.top(); tbr_d.popQ;

55 auxl=tbr_d.top(); tbr_d.popQ;

56 }

57 break;

58 }

59 }

61 template <typename T>
62 void a_portfolio(

63 Mode mode,

64 const vector<T>& L,
65 vector<T>& a_L,

66 T& P,

67 T& a_P

es) {

69 vector<T> B(n,0),S(n,0);
70 T swapval=0,b=0,s=0;

42

71

72

73

74

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

T a_swapval=0,a_b=0,a_s=0;
vector<T> a_B(n,0),a_S(n,0);
switch (mode) {
case AUGMENTED_PRIMAL:
b=1.0;
s=0.0;
for (int j=m;j<n;j++) {
tbr_d.push(b);
b=b/(1.0+delta*L[j]);
B[jl=b;
s=s+deltaxb;
Sljl=s;
}
P=0;
for (int i=0;i<no;i++){
int j=maturities[i]+m-1;
tbr_i.push(j);
swapval=B[j]+swaprates[i
if (swapval<0) {
P+=-100.0*swapval;
tbr_f.push(1);
} else tbr_f.push(0);
}
for (int i=0;i<m;i++) {
tbr_d.push(P);
P=P/(1.0+deltaxL[i]);
}
tbr_d.push(b);
break;
case SPLIT_ADJOINT:
b=tbr_d.top(); tbr_d.pop()
for (int i=m-1;i>=0;i--) {
P=tbr_d.top(); tbr_d.pop
a_L[i]+=-P*a_Px*delta/((1
a_P=a_P/(1.0+deltaxL[i])
}

for (int i=no-1;i>=0;i--)

if (tbr_f.top()) a_swapval+=-100.0%*a_P;

tbr_f.popQ);
int j=tbr_i.top(); tbr_i
a_B[jl+=a_swapval;
a_S[jl+=swaprates[i]*a_s
}
a_P=0.0;
for (int j=n-1;j>=m;j--) {
a_s+=a_S[jl; a_S[j1=0;

1xS[j1-1.0;

’

OF

.0+deltaxL[i])*(1.0+delta*L[i]));

’

{

.popQ);

wapval; a_swapval=0.0;

43

129

a_b+=deltaxa_s;
a_b+=a_B[jl; a_B[j]=0;
b=tbr_d.top(); tbr_d.pop();
a_L[jl+=-deltax*b*a_b/((1.0+deltaxL[j])*(1.0+delta*L[j]));
a_b=a_b/(1.0+delta*L[jl);

}

a_b=0.0;

a_s=0.0;

break;

int main() {
vector<double> Z(n,0),L(n,0),a_L(n,0),Li(n,0.05),a_Li(n,0);
double P=0,a_P=0;
default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);

for (int j=0;j<p;j++) {
for (int i=0;i<m;i++)
Z[i]=0.3+distribution(generator);
for (int i=0;i<n;i++) L[i]l=Lil[il;
a_path_calc(AUGMENTED_PRIMAL,L,a_L,Z);
a_portfolio(AUGMENTED_PRIMAL,L,a_L,P,a_P);
a_P=1.0/p;
a_portfolio(SPLIT_ADJOINT,L,a_L,P,a_P);
a_path_calc(SPLIT_ADJOINT,L,a_L,Z);
for (int i=0;i<n;i++) { a_Li[il+=a_L[i]; a_L[i]=0; }
}
for (int i=0;i<n;i++)
cout << "dPAL[" << i << "]=" << a_Li[i] << endl;
return O;

}

Listing 38: Adjoint LIBOR (dco/c++)
#include "std_includes.h"
#include "f.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;

typedef typename DCO_AM::type DCO_A;

typedef typename DCO_AM::tape_t DCO_AM_TAPE;

int main() {

vector<DCO_A> L(n,0.05); DCO_A P=0;
srand(0); default_random_engine generator(0);

44

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

10

11

12

13

14

15

16

17

18

normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)

for (int i=0;i<m;i++)

Z[j1[i]=0.3+distribution(generator);

DCO_AM: :global_tape=DCO_AM_TAPE: :create();
DCO_AM: :global_tape->register_variable(L);
£(L,P,2);
DCO_AM: :global_tape->register_output_variable(P);
dco: :derivative(P)=1;
DCO_AM: :global_tape->interpret_adjoint () ;
vector<double> dPdL(dco: :derivative(L));
cerr << dco::size_of (DCO_AM: :global_tape) << "B" << endl;
DCO_AM_TAPE: :remove (DCO_AM: : global_tape) ;
for(int i=0;i<n;i++)

cout << "dPAL[" << i << "]=" << dPdL[i] << endl;
return O;

}
C.2 Second-Order AD
C.2.1 Tangents

Listing 39: Second-Order Tangent LIBOR (dco/c++)

#include "std_includes.h"
#include "f.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;
typedef dco::gtls<DCO_T>::type DCO_TT;

int main() {
vector<DCO_TT> L(n,0.05); DCO_TT P=0;
srand(0) ; default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m)) ;
for (int j=0; j<p;j++)
for (int i=0;i<m;i++)
Z[j1[i]=0.3+distribution(generator);
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco: :value(dco: :derivative (L[i]))=1;
for (int j=0;j<=i;j++) {
dco::derivative(dco: :value(L[j]l))=1;
£f(L,P,2);
ddPdLL[i] [j1=ddPdLL[j] [i]=dco: :derivative(dco: :derivative(P));

45

23

24

26

27

28

29

dco::derivative(dco: :value(L[j]))=0;
}
dco: :value(dco: :derivative(L[i]))=0;
}
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)

cout << "ddP/dL[" << i << "]JdL[" << j << "= << ddeLL[i][j] << endl;
return O;

}
C.2.2 Adjoints

Listing 40: Second-Order Adjoint LIBOR (dco/c++)

#include "std_includes.h"
#include "f.h"

#include "dco.hpp"

typedef dco::gtls<double>::type DCO_T;
typedef dco::gals<DCO_T> DCO_TAM;
typedef DCO_TAM::type DCO_TA;

typedef DCO_TAM: :tape_t DCO_TAM_TAPE;

int main() {

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

vector<DCO_TA> L(n,0.05); DCO_TA P=0;
srand(0) ; default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m));
for (int j=0; j<p;j++)
for (int i=0;i<m;i++)
Z[j1[1]=0.3+distribution(generator) ;
DCO_TAM: :global_tape=DCO_TAM_TAPE: :create();
DCO_TAM: :global_tape->register_variable(L);
DCO_TAM_TAPE: :position_t tpos=DCO_TAM: :global_tape->get_position();
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for(int j=0;j<n;j++) {
dco::derivative(dco::value(L[j]))=1;
£f(L,P,Z);
DCO_TAM: :global_tape->register_output_variable(P);
dco::value(dco: :derivative(P))=1;
DCO_TAM: :global_tape->interpret_adjoint_to(tpos);
for(int i=0;i<n;i++) {
ddPdLL[i] [jl=dco: :derivative(dco: :derivative(L[i]));
dco::derivative(L[i])=0;
}
dco::derivative(dco: :value(L[j]))=0;
DCO_TAM: :global_tape->reset_to(tpos) ;

46

34

35

36

37

38

39

40

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

}

DCO_TAM_TAPE: :remove (DCO_TAM: :

for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
cout << "ddP/dL[" << i <<
return O;

}
D Product Reduction

D.1 First-Order AD
D.1.1 Tangents

Listing 41: Tangent Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>

void f_t(const vector<T>& x, const vector<T>& x_t, T& y, T& y_t) {

assert(x.size()>0);
y_t=x_t[0]; y=x[0];

for (size_t i=1;i<x.size();i++) { y_t=y_t*x[i]+y*x_t[i]; y*=x[i]; }

}

void driver(vector<double>& x, double &y, vector<double>& g) {

global_tape) ;

"JdL[" << j << "]=" << ddPdLL[i] [j] << endl;

vector<double> x_t(x.size(),0);
for (size_t i=0;i<x.size();i++) {

x_t[il=1;
f_t(x,x_t,y,glil);
x_t[i]=0;
}
}

int main(int c, char*x v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);
vector<double> x(n), g(n); double y;
for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

driver(x,y,g);

cout << y << endl;

for (int i=0;i<n;i++) cout <<
return O;

}
D.1.2 Adjoints

gli] << endl;

47

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Listing 42: Adjoint Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>

void f_a(const vector<T>& x, vector<T>& x_a, T& y, T& y_a) {

assert(x.size()>0);
stack<T> tbr;
y=x[0];

for (size_t i=1;i<x.size();i++) { tbr.push(y); y*=x[i]; }

double ys=y;

for (size_t i=x.size()-1;i>0;i—-) {
y=tbr.top(); tbr.pop(); x_alil+=y*y_a; y_a=x[il*y_a;

}
x_al0l=y_a; y_a=0;
y=ys;

}

void driver(vector<double>& x, double &y, vector<double>& g) {

double y_a=1;
f_a(x,g,y,y_a);
}

int main(int c, char*x v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);
vector<double> x(n), g(n); double y;
for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));

driver(x,y,g);
cout << y << endl;

for (int i=0;i<n;i++) cout << g[i] << endl;

return O;

}
D.2 Second-Order AD
D.2.1 Tangents

Listing 43: Second-Order Tangent Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>
void f_tt(
const vector<T>& x,
const vector<T>& x_t,
const vector<T>& xt,

48

9 const vector<T>& xt_t,

10 T& Y,

11 T& y_t,

12 T& yt,

13 T& yt_t

) {

15 assert(x.size()>0);

16 yt_t=xt_t [0];
17 yt=xt[0];
18 y_t=x_t[0];

19 y=x[0];

20 for (size_t i=1;i<x.size();i++) {

21 yt_t=yt_t*x[il+yt*x_t[i]+y_t*xt [i]+y*xt_t[i];
22 yt=yt*x [i]+y*xt[1i];

23 y_t=y_t*x[il+y*x_t[i];

24 y*x=x[1i];

25 }

26}

27
2s void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& H)
20 vector<double> x_t(x.size(),0);

30 vector<double> xt(x.size(),0);

31 vector<double> xt_t(x.size(),0);

32 double yt, y_t;

33 for (size_t i=0;i<x.size();i++) {

34 xt[i]l=1;

35 for (size_t j=0;j<x.size();j++) {

36 x_t [J] =1;

37 f_tt(x,x_t,xt,xt_t,y,y_t,yt,H[i1[j1);

38 x_t[j1=0;

39 }

40 g[l] =yt;

41 xt[1]=0;

42 }

a3}

44

45 int main(int c, char*x v[]) {

16 assert(c==2); int n=atoi(v[1]); assert(n>0);
a7 vector<double> x(n), g(n);

48 double y;

19 vector<vector<double>> H(n,vector<double>(n));
50 for (int i=0;i<n;i++) x[i]=cos(static_cast<double>(i));
51 driver(x,y,g,H);

52 cout << y << endl;

53 for (int i=0;i<n;i++) cout << g[i] << endl;
54 for (int i=0;i<n;i++) {

49

10

11

12

13

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

for (int j=0;j<n;j++) cout << H[i][j] << " ";
cout << endl;

}

return O;

}
D.2.2 Adjoints

Listing 44: Second-Order Adjoint Product Reduction (Handwritten)

#include "std_includes.h"
using namespace std;

template<typename T>
void f_a_t(
const vector<T>& x,
const vector<T>& x_t,
vector<T>& x_a,
vector<T>& x_a_t,
T& y,
T& y_t,
T& y_a,
T& y_a_t
) A
assert(x.size()>0);
stack<T> tbr_t;
stack<T> tbr;
y_t=x_t[0];
y=x[0];
for (size_t i=1;i<x.size();i++) {
tbr_t.push(y_t);
tbr.push(y);
y_t=y_t*x[i]+y*x_t[i];
y*=x[1i];
}
double ys_t=y_t;
double ys=y;
for (size_t i=x.size()-1;i>0;i--) {
y_t=tbr_t.top(); tbr_t.pop();
y=tbr.top(); tbr.pop(Q);
x_a_t[i]l+=y_t*xy_at+ty*y_a_t;
x_al[il+=y*y_a;
y_a_t=x_t[il*y_a+x[il*y_a_t;
y_a=x[il*y_a;
}
x_a_t[0]=y_a_t;
x_al0l=y_a;

50

38

39

40

41

42

43

44

46

47

48

49

50

59

60

61

62

63

64

65

66

67

68

y_a_t=0;
y_a=0;
y_t=ys_t;
y=ys;

}

void driver(vector<double>& x, double &y, vector<double>& g, vector<vector<double>>& h)

int n=x.size();

for (int i=0;i<n;i++) {
vector<double> x_t(n,0), x_a(n,0);
x_t[il=1;
double y_a=1,y_a_t=0;
f_a_t(x,x_t,x_a,h[i],y,glil,y_a,y_a_t);

}

}

int main(int c, char* v[]) {

assert(c==2); int n=atoi(v[1]); assert(n>0);

vector<double> x(n), g(n);

double y;

vector<vector<double>> H(n,vector<double>(n));

for (int i=0;i<n;i++) x[il=cos(static_cast<double>(i));

driver(x,y,g,H);

cout << y << endl;

for (int i=0;i<n;i++) cout << g[i] << endl;

for (int i=0;i<n;i++) {
for (int j=0;j<n;j++) cout << H[i][j] << " ";
cout << endl;

}

return O;

}
E Black Scholes PDE (Explicit Time Stepping)

E.1 First-Order AD
E.1.1 Tangents

Listing 45: Tangent Black Scholes PDE (Explicit Time Stepping; dco/c++)

include "std_includes.h"
include "f.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

typedef Matrix<DCO_T,Dynamic,1> DCO_VT;

o1

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

typedef Matrix<double,Dynamic,1> VT;

VT driver(const VT& u, double e, double r, double sigma, int nt) {
int nx=u.size()+1;
VT g(nx+2);
DCO_VT u_(nx-1);
DCO_T e_=e, r_=r, sigma_=sigma;
// Delta
for (int i=0;i<nx-1;i++) {
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco::derivative(u_[i])=1;
f(u_,e_,r_,sigma_,nt);
glil=dco: :derivative(u_[(nx-1)/2]);
}
// 222
for (int j=0;j<nx-1;j++) u_[jl=ulj];
dco: :derivative(e_)=1;
f(u_,e_,r_,sigma_,nt);
glnx-1]=dco: :derivative(u_[(nx-1)/2]);
dco: :derivative(e_)=0;
// Rho
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco::derivative(r_)=1;
f(u_,e_,r_,sigma_,nt);
glnx]l=dco: :derivative (u_[(nx-1)/21);
dco: :derivative(r_)=0;
// Vega
for (int j=0;j<nx-1;j++) u_[jl=uljl;
dco: :derivative(sigma_)=1;
f(u_,e_,r_,sigma_,nt);
glnx+1]=dco: :derivative(u_[(nx-1)/2]);
return g;

3

int main(int c, char* v[]) {
assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);
const double e=0.5, r=0.03, sigma=0.5;
assert (nt>sigma*sigma*nx*nx) ;
assert (nt>(r*r)/(sigma*sigma)) ;
VT u(nx-1); double u0=0;
for (int i=0;i<nx-1;i++) { uO=uO+1./nx; ulil=max(u0-e,0.); }
VT greeks=driver(u,e,r,sigma,nt);
for (int i=0;i<nx-1;i++)
cout << "dVAuO[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;
cout << "dVde=" << greeks[nx-1] << endl;

92

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

cout << "dVdr=" << greeks[nx] << endl;
cout << "dVdsigma=" << greeks[nx+1] << endl;
return O;

}
E.1.2 Adjoints

Listing 46: Adjoint Black Scholes PDE (Explicit Time Stepping; dco/c++)
include "std_includes.h"
include "f.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_AM;
typedef DCO_AM::type DCO_A;

typedef DCO_AM::tape_t DCO_AM_TAPE;

typedef Matrix<DCO_A,Dynamic,1> DCO_VT;
typedef Matrix<double,Dynamic,1> VT;

VT driver(const VT& u, double e, double r, double sigma, int nt) {
int nx=u.size()+1;
VT g(nx+2);
DCO_VT u0_(nx-1);
for (int j=0;j<nx-1;j++) uw0_[jl=uljl;
DCO_A e_=e, r_=r, sigma_=sigma;
DCO_AM: :global_tape=DCO_AM_TAPE: :create();
for (int j=0;j<nx-1;j++)

DCO_AM: :global_tape->register_variable(u0_[j]);
DCO_AM: :global_tape->register_variable(e_);
DCO_AM: :global_tape->register_variable(r_);
DCO_AM: :global_tape->register_variable(sigma_);
DCO_VT u_=ul_;
f(u_,e_,r_,sigma_,nt);
for (int j=0;j<nx-1;j++)

DCO_AM: :global_tape->register_output_variable(u_[j]);
dco: :derivative(u_[(nx-1)/2])=1;
DCO_AM: :global_tape->interpret_adjoint () ;
// Delta
for (int j=0;j<nx-1;j++)

gljl=dco: :derivative(u0_[j1);

// 222

glnx-1]=dco: :derivative(e_);
// Rho
glnx]=dco::derivative(r_);
// Vega

glnx+1]=dco: :derivative(sigma_) ;

93

39 return g;

w0 }

41

42 int main(int c, char* v[]) {

43 assert(c==3); int nx=atoi(v[1]), nt=atoi(v[2]);

44 const double e=0.5, r=0.03, sigma=0.5;

45 assert (nt>sigma*sigma*nx*nx) ;

46 assert (nt>(r*r)/(sigma*sigma)) ;

a7 VT u(nx-1); double u0=0;

48 for (int i=0;i<nx-1;i++) { uO=uO+1./nx; ul[il=max(ul0-e,0.); }
49 VT greeks=driver(u,e,r,sigma,nt);

50 for (int i=0;i<nx-1;i++)

51 cout << "dVduO[" << (i+1)*1./(nx-1) << "]=" << greeks[i] << endl;
52 cout << "dVde=" << greeks[nx-1] << endl;

53 cout << "dVdr=" << greeks[nx] << endl;

54 cout << "dVdsigma=" << greeks[nx+1] << endl;

55 return O;

s6)

o4

