Software and Tools:

for Computational
Engineering

Vcld f(int n, doublex x,
int m, doublex y) { .

[Adjoint] Algorithmic Differentiation
([AJAD)
Risk Training Masterclass, London, 21-22 March 2018
Uwe Naumann

STCE, RWTH Aachen University, Germany

What is a (1%-order) Tangent?

nnnnnnnnnnnnn m
Primal x = x(p) € R™ defined implicitly:

r=F(x,p) =0;

F:R"xR"—=R™

dF
dx
Tangent (forward sensitivities) x(!) = x()(p,p(!)) € R™ :
P = FO (0 p p®) o,
defined by

oF
Jp

FOR™xR"xR" — R™ iz
dx
1) (p)

. p
dp P
(partial) derivatives.

We distinguish between complete (4-) and incomplete (g—) sensitivities /

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0)>» «4F» « =»

«E)»

DA

Story in a Nutshell
Symbolic, Algorithmic, Approximate Tangents o

snemros | IRANTH

r=a2-p=0

Implicit Function Theorem

w0 = PO (0 pM) = o

primal (r — 0)

approximate tangent &(1)

0C =0(1) - POC

algorithmic tangent &(1)

0C = 0(1) - POC

dF~' oF
O = 20
* dx p p
1
,T.(,l).pm

T

symbolic tangent (r(*) — 0)
0C=0(1)-POC

Y

R .
FASESEIONSEI

Notation: OC = operations count; POC = primal operations count

Naumann, Risk AAD Masterclass

, 21-22 March 2018

«O)>» «F»r «

i

i
Uy
)
0
i)

e | RWTH
What is a (1%-order) Adjoint? "
Adjoint (backward sensitivities) p(1) = p(1)(X(1),
I'(l) =

Foy(x1), P, P(1))
defined by

p) e R":

F(l) cR™xR"<R"™ - R"

_ (dx(p)\"
P =\ " “X(1)

implies consistency

(xa),xM) = (pr), pV)

= necessary condition for numerical evaluation

hard to obtain by symbolic differentiation

of tangents and adjoints
ensured by algorithmic differentiation

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

i
v

DA

Story in a Nutshell

somaemaroos | IRANTHL
s
Symbolic, Algorithmic, Approximate Adjoints
ray = Fay(ra),p.py) =0
P2 p=0 Implicit Function Theorem - _aiT - E,T)
PO= " o
=—(-1)- 2.4 S Z(1)
symbolic adjoint (r(1) — 0)
primal (r — 0) 0C=0(1)-POC
PMR ~ POC
Y
L7
Pa) = Pa) = P(1)
approximate adjoint p(y) .
0C ~ O(n) - POC (=, 20)) & 00, py)
E e m e e e e e e e e e e m - - == >
algorithmic adjoint 7(1)
0C ~ O(1) - POC 2O z0) & W,
PMIR ~ POC @ 2a)) = W, Bay)

Notation: PMR = persistent memory requirement

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

it

v

a
i
v

DA

Tangents vs. Adjoints ~ w

Algebraic Perspective erceog

Chain Rule on F: R" — R™ (assuming differentiability of F,G and H)

_ dy dy dl du
y_F(G(i(ﬁ)) = dx dv du dx

UERP
VeR4
Tangent
dy dl dl du
dx dv \du dx
Adjoint

dy _ (dy dv\ du
dx \dv du dx
Example: Dense local Jacobians for n =10, p =10, ¢ = 10, and m =1

1100 fma > 200 fma

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr «E»r <

>

DA

Tangents vs. Adjoints

Combinatorics

nnnnnnnnnnnnn

» V. Mosenkis, U. N.: On Lower Bounds for Optimal Jacobian
Accumulation. To appear in OMS, 2018.

» U. N.: Optimal Jacobian accumulation is NP-complete. Math. Prog.
112(2):427-441, Springer, 2008.

Chapmes

vee—'

» U. N.: Optimal accumulation of Jacobian matrices TR SEHE
by elimination methods on the dual computational Gompeting
graph. Math. Prog. 99(3):399-421, Springer, \
2004.

> A. Griewank and U. N.: Accumulating Jacobians !@ ‘
as chained sparse matrix products. Math. Prog.
95(3):555-571, Springer, 2003.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O0» «Fr «E>» «E>»

A 7

Case Study: SDE

We are looking for the expected value E(x) of the solution z(p,T),T > 0 of
the scalar stochastic initial value problem

dx = f(z(p,t),p,t))dt + g(z(p,t), p, t)dW

with Brownian Motion dW and for z(p,0) = z°.

Forward finite differences in time with time step 0 < At < 1 yield the
Euler-Maruyama scheme

=gt At (2t p,i - At) + VAL g2t p,i - At) - dW?
fori =0,...,n—1, target time T' = n - At, parameter vector p € R!, and with

random numbers dWW* drawn from the standard normal distribution N (0, 1).

The solution E(z(T')) is approximated using Monte Carlo simulation over (a
sufficiently large number of) Euler-Maruyama paths.

We are interested in sensitivities of E(z(T)) wrt. p.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr «E»r <

1y
v
it

A 8

Case Study: SDE

Performance: m = 10, n = 10°

dx = p(t) - sin(z(p(t),t) - t)dt + p(t) - cos(x(p(t),t) - t)dW; t € [0,1]

Time (s) | Memory (MB) | rel. Time
Primal 1.2 79 1
FFD 380 80 317
AAD by hand 1.9 240 1.6
checkpointed AAD by hand 2.2 80 1.8
AAD by dco/c++ 1.7 728 14
checkpointed AAD by dco/c++ 1.9 86 1.6

FFD: Forward Finite Differences
AAD: Adjoint Algorithmic Differentiation

— see code, race

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr CEr <

1y
v
it

A 9

Case Study: PDE

y=1y(t,z,p) : R x R x R — R is given as the solution of the 1D diffusion
equation

dy d?y

TR
over the domain © = [0, 1] and with initial condition y(0, z) for z € © and
Dirichlet boundary y(t,0) and y(¢,1) for t € [0,1].

The sample solution codes use central finite difference discretization in space
within explicit and implicit Euler time integration schemes.

We are interested in

T
dy(1,z)
sV,
dy(0, x
— see code
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»>» «E>» «E>» = A 10

Case Study: LIBOR

We consider the same LIBOR market model which was used in

RISK, January 2006.

M.B. Giles and P. Glasserman: Smoking adjoints: fast Monte Carlo Greeks
to illustrate the benefits of AAD for simulations in finance.
See also

M.B. Giles: Monte Carlo evaluation of sensitivities in computational finance.
In Elias A. Lipitakis, editor, HERCMA Conference, Athens 2007.
and

http://people.maths.ox.ac.uk/ gilesm/codes/libor_AD/

— see code
Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

A 11

Adjoints Are Everywhere ...
e.g, Physical Oceanography

Let the run time of f be 1min.
Let the spatially distributed param-
eter (e.g, bottom topography) be
defined on a mesh with 106 cells.
Finite difference approximation of
the gradient of the average amount
of water flowing through the Drake
passage takes O(10%)min (almost
2 years). The algorithmic adjoint
MITgcm computes the gradient with
machine accuracy in O(1)min (ap-
prox. 10min).

J. Utke, U.N. et al.: OpenAD/F: A Modular Open-Source Tool for Automatic Differentiation of Fortran

Codes, ACM TOMS, 2008.

Naumann, Risk AAD Masterclass, 21-22 March 2018

DA

12

Adjoints Are Everywhere ... P

Computational
Engineering

e.g, Other Projects

-0.02

0
-0.0005

Y¥=0917x-0.1157
R*= 08782
0001

.
o ear

Reconstructed Abs.[1/em] Q.

8
s
&
&

t

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F>r <

it
it
it
N)
0
?

13

Reading

U.N.: The Art of Differentiating Computer Programs. An
Introduction to Algorithmic Differentiation. Number 24 in
Software, Environments, and Tools, SIAM, 2012.

U.N., J. du Toit: Adjoint Algorithmic Differentiation Tool
Support for Typical Numerical Patterns in Computational Fi-
nance, JCF 2018.

K. Leppkes, J. Lotz, U.N.: dco/c++: Derivative Code by
Overloading in C++. Under Review for ACM TOMS.

U.N.: Adjoint Code Design Patterns. Under Review for ACM
TOMS.

K. Leppkes, J. Lotz, U.N., J. du Toit: Meta Adjoint Pro-
gramming in C++, Technical Report AIB-2017-07, Dept. of
Computer Science, RWTH Aachen University, Sep. 2017.

U.N., K. Leppkes: Low-Memory Algorithmic Adjoint Propa-
gation. CSC18.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr «Er <

>

DA

14

About Myself

1l|
for Computational
2 engineering
R—

T :

[’ ;
v,

UNIVERSITY

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O» «F>r «

a
it

15

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents

Adjoints
Hands on
Beyond Black-Box AD
Implicit Functions

Checkpointing
Hands on

Further AAD

Conclusion

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

it
v

A 16

Outline

First-Order AD

B, Sotwrs s oo

RWTHAACHEN
i UNIVERSITY

Naumann, Risk AAD Masterclass, 21-22 March 2018

«Or «F>r <

v
a
it

DA

17

First-Order AD

Summary of Results

Lety = F(x), F:R" - R™:

1. tangent AD

» y =VF . x" = VF at O(n) - POC
2. adjoint AD
» x) = VF" . yu) = VF at O(m) - POC

» m =1 = cheap gradients at O(1) - POC
» PMR ~ POC

3. higher-level elemental functions, e.g, BLAS

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

> approximate tangents by finite differences

>

DA

18

First-Order AD

Naumann, Risk AAD Masterclass, 21-22 March 2018

Essential Ingredients

«4O0r «F>» « =>»

a
it

DA

19

Essential Ingredients)

Linearized Single Assignment Code

The given implementation of F': R™ — R"™ : y = F(x), can be decomposed
into a single assignment code (SAC)

v = i(T) = @ 1=0,....,n—1

Uj:¢j((vk)k<j) j=n,....,n+qg—1

Yk = 997L+q+k:<vn+p+k) = Un+p+k k= 0, cee, M — 1

where ¢ = p+ m and k£ < j denotes a direct dependence of v; on v, as an

argument of ;. All elemental functions ¢, possess continuous (local) partial
derivatives

dp;

g0 = v, (Ukr)k:—<j

with respect to their arguments (vy)x~; at all points of interest.
A linearized SAC is obtained by augmenting the elemental assignments with
computations of the local partial derivatives d ;.

— x+=dt*p[i]*sin(x*t)-+ p[i| *cos (x*t) *sqrt(dt) *dWI]][i];

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a
it
v
it

A 20

Essential Ingredients
Labeled Directed Acyclic Graph

The SAC induces a directed acyclic graph (DAG) G =G

((V, E) with
integer vertices V ={0,...,n+ ¢} and edges V x V D FE

(i) i< 4},

The set of vertices representing the n inputs is denoted as X C V. The m

outputs are collected in Y C V. All remaining intermediate vertices belong to
Z V.

7

A labeled DAG is obtained by attaching the d;; to the corresponding edges
(,7) in the DAG.

In the following DAGs are assumed to be labelled.

— x+=dt*p[i]*sin(x*t)+pl[i] *cos(x*t) *sqrt(dt) *dW/[j][i];

it
v
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr «Er < A 21

Essential Ingredients . .
Chain Rule s

Lety = F(x): Dp CR" — Ir CR™ be defined over D
and let

be such that both
G:DocCRPxR" — I CR™

and

H:Dg CR" — Iy CRP

are continuously differentiable over their respective domains Dg = Iy X Dp
and Dy C Dp. Then F is continuously differentiable over D and

dF, .. dG G dH oG

ax) = g (20X = (@) e () (2T
for all x* € Dy and z* = H(x").
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»r» «E>» «E>» E DA 22

Essential Ingredients
Chain Rule on DAG

Software and Tools
for nal

Engineering

~z:i=H(x)
SAC: y = G(Z7X)
VF(x)= d

D

pathe DAG

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

I

(i,5)€path

— x+=dt*p[i[*sin(x*t)-+ p[i| *cos(x*t) *sqrt(dt) *dWI]][i];

it
v
a

A 23

First-Order AD

saemons | IRANTHL
b
iz B e

Tangents

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
a
it
v

DA

24

Tangent Code

Computer Scientist's View (Simplified)

A first-order tangent code F() : R" x R"” — R™ x R™,

Y — 1)
= Y (x,x'"),
<y(1)> ()
Jacobian-vector product:

augments the computation of the primal function with the computation of a

y = F(x)

yM = VF(x) cx(M

The entire Jacobian can be harvested column-wise from the active output
directions (z(1),y(1))T € R™ by seeding active input directions
(xM),z(1)T € R™ with the Cartesian basis vectors in R".

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

DA

25

Tangent Code

Active and Passive (Program) Variables

Variables for which derivatives are computed are referred to as active; X is
active input; y is active output.

Variables which depend on active inputs are referred to as varied.

Variables for which no derivatives are computed are referred to as passive.

Variables which active outputs depend on are referred to as useful.

Active variables are both varied and useful.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
v
a
it
v

DA

26

Tangents by AD
Tangent DAG

Define

d
o =

T ds
for v € {x,y} and some auxiliary s € R assuming that F'(x(s)) is continuously
differentiable over its domain.

By the chain rule

g = Iy dy dx

= = — L (1)
ds dx ds VE(x)-x

VF
Application of the chain rule to the tangent DAG yields i
y® € R™ as a function of x € R" and x(!) € R".
(Note: forward edge back-elimination)

ey

— x+=dt*p[i]*sin(x*t)-+ p[i| *cos(x*t) *sqrt (dt) *dWI]][i]
Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

27

Tangents by AD (Forward Mode)
Tangent SAC

Similar reasoning applied to the SAC yields ...
0 1 Ui i “seed”
1=0,...,n— = see
Ul(l) xgl)

' 1 v Pilvk i “propagate”

L=n,...,q— 1: 1 = dei(vi)k<i (1)
UL(: > j<i q Y
, v ,

i=0,...,m—1 Zﬁ) = ?Sp“ “harvest”
Y; Un+p+i

Naumann, Risk AAD Masterclass, 21-22 March 2018

— x+=dt*p[i]*sin(x*t)+pl[i]*cos(x*t)*sqrt(dt) *dW/[j][i];

«0)>» «F>»

it
a
it
v

DA

28

Tangents by AD (Forward Mode) menere | RWTH

Code Generation Rules

duplicate active data segment
augment assignments with their tangents

leave flow of control unchanged

= o=

replace subprogram calls with their calls to their tangent versions

1 .
2 for (int i=0;i<n;i++) {
3 xt+=dt*sin(x*t)*pt[i]
4 +dt*p[i] *t*cos (x*t) *xt
5 +cos (x*t)*sqrt (dt)*dW[j] [i]*pt [i]
6 -plil*t*sin(x*t)*sqrt (dt)*dW[j] [i]*xt;
7 x+=dt*p[i]l*sin(x*t)+p[il*cos(x*t)*sqrt(dt)*dw[j] [i];
8 t+=dt;
9 }
10
—» SDE
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»r» «E>» «E>» = A 29

Tangents by Overloading
Forward Edge Back-Elimination on Tangent DAG

Software and Tools

Engineering

We consider

(1) = (“gnteos /)

implemented as

5: yo(*)

t :=sin(xg * x1)/x1
Yo =X *l; Y1 :=1t*xc

yielding SAC

Vg ‘= X * 1

v3 1= sin(vg)

vy = w3/

Yo = To kVaj Y1 :=Va ¥ C

for some passive value ¢, i.e, no deriva-

tives of or with respect to required; x,y,
and t are active.

Tangent DAG

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a

it
v

it

DA

30

Tangents by Overloading

j Enginrig
Seed
L5y L6 yi(oe)
: 25D GRS :
4:/
/et x =7
: : X :?
[v4] 3: sin
: .'-_[*”4/T1] 1
feos(oa)]X 3 zy) =7
1
x(l) =7
2: %
Naumann, Risk AAD Masterclass, 21-22 March 2018 40> (> <> «E» E DA

31

Tangents by Overloading

Propagate (Local Directional Derivatives)

Sotursand oo
o ottt
5 o)

RWTH
vl
Bt

6 (e |
v

fvd]

’U%l:): To *T1

= I % x(()l) + xg * x&l)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
a
it
v

DA

32

Tangents by Overloading

somemaros | IRANTHL
Ergocg
Propagate
Vg = T * T1
oD o D (D)
5 | 1= 1 % X To * Ty
v3 1= sin(vg)
._ (1)

vy 1= cos(vg) * vy

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> «Fr «Er «E> =

DA

33

Tangents by Overloading

Propagate -
5 go(s) L6 yalxo)
B v o] [d.v
Vg i= T * T1
SO M
b =T ¥ Xy + Xk Ty
v3 1= sin(vg)
1 1
vé)= cos(vg) * vé)
vy 1= v3/1
(1) ._ (1)
vy = (vg

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40O0>» «F»r «

— Uy * mgl))/m

it
it
v

DA

34

Tangents by Overloading
Propagate

saemons | IRANTHL
et
e

U%llz To * L1 1 1
()) ::xl*xé)+xo*zg)
v3 = sin(vq)
(vl vgl) = cos(va) * vél)
vy 1= w3/
[w$M] vil) : (vél) — U4 * xgl))/m
Yo ‘= To * V4
OO
Yo

= U4 * :c(()l) + xp * vil)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
it
v

DA

35

Tangents by Overloading
Propagate

Software and Tools
for Computational

Engineering

Vg 1= Xg * X1
Uzl) =Xy ok xél) + X0 * l‘gl)
vz 1= sin(vg)
vél) = cos(vg) * vél)
vy =3/

vil) = (vgl) — Uy * xil))/xl
Yo -= To * Vs

y(()l) = vy % a:gl) + xo * vil)
Y1 ‘= Uy xC
y§1) =c* vil)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
it
v

DA

36

Tangents by Overloading

Harvest

Software and Tools
for Computational

Engineering

Naumann, Risk AAD Masterclass, 21-22 March 2018

T) ()
Vg =X kT + To kX
vg = sin(vq)

vgl) = cos(v2) * vél)
vy 1= w3/

vil) = (vgl) — g * :r:gl))/xl
Yo = To * Vg

y(()l) 1= Uy ¥ x(()l) + xg * vil)
Y1 ‘= Vg *xC
y?) = Ck vfll)

«4O0» «F»r «

it

v

a
it

v
it

DA

37

Tangents by dco/c++ menere | RWTH

Engineering

Scalar Tangents (dco: :gt1s<double>)

#include "dco.hpp"
typedef dco::gtis<double>::type DCO_T; // tangent type

vector<double> driver(double& xv, vector<double>& pv,

const vector<vector<double>>& dw) {

int n=dW[0] .size(); vector<double> g(n+1,0);

DCO_T x0=xv; vector<DCO_T> p(n); dco::value(p)=pv; DCO_T x=x0;

dco::derivative(x)=1; // seed

euler_maruyama(x,p,dW); // propagate

gl0]l=dco: :derivative(x); // harvest

for (int i=0;i<n;i++) {
x=x0; // reset
dco: :derivative(p[il)=1; // seed
euler_maruyama(x,p,dW); // propagate
gli+1]l=dco::derivative(x); // harvest
dco::derivative(p[i]l)=0; // reset

17 }
18 return g;
19}
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»r» «E>» «E>» E DAl 38

First-Order AD

saemons | IRANTHL
et
iz B e

Adjoints

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
a
it
v

DA

39

Adjoint Code

Computer Scientist's View (Simplified)

A first-order adjoint code F(7) : R" x R" x R™ — R™ x R",

y
= F X7 x) b
<x<1>) (1) (X X(1): ¥ (1))
augments the computation of the function with the computation of a shifted
product of the transposed Jacobian with a vector:
y = F(x)
x(1) = %) + V)" -y

yay =0

... harvesting of the whole Jacobian row-wise by seeding input directions
y(1) € R™ with the Cartesian basis vectors in R™ and for x(;) = 0 on input.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

DA

40

Adjoint Code

Context-Free vs. Context-Sensitive

> context-sensitive adjoint

Engineering

X1y = X(1) + VF(x)T. Y1)
ya) =0
if

» subsequent active use of x
> previous active use of y

in primal
> context-free adjoint
) = VF(X)I Y1)
if
> no subsequent active use of x

> no previous active use of y
in primal

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
a
it
v

DA

41

Adjoints by AD
Adjoint DAG

Define

dt T

dv
differentiable over its domain.

'U(l =
for v € {x,y} and some auxiliary ¢ € R assuming that ¢(F'(x)) is continuously

By the chain rule

@l _drt o’
dx dx dy

Yy
= VF(x)" "Ya) - @
Application of the chain rule to the adjoint DAG yields e
x(1y € R™ as a function of x € R" and y(;) € R™. dx
(Note: reverse vertex elimination)

— x+=dt*p[i]*sin(x*t)-+ p[i| *cos(x*t) *sqrt (dt) *dWI]][i]
Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

42

Adjoints by AD (Reverse Mode)

Adjoint SAC: Augmented Primal / Forward Section

Software and Tools
for Computational

Engineering

Similar reasoning applied to the SAC yields ...

1=0,....n—1: wv;:=ux
“record” independent variables for harvesting
i=mn, "aq_l: Vi ::@i<vk)k<i
doi(Ve)k<i . . .
“record” intermediate variables and dj‘i = M for) <1
' d/’l)j
1=0,....m—1:

Yi = Untpti
“record” dependent variables for seeding

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
a
it
v

DA

43

Adjoints by AD (Reverse Mode)
Adjoint SAC: Adjoint / Reverse Section

saemons | IRANTHL
et
ety

1=0,...,m—1 Untptiy = Yig “seed”
i=q—1,....n: v, = E dji-vj,, propagate”
VERY]
1=0,...,n—1

Ti, = Vi,, harvest

— x+=dt*p[i]*sin(x*t)+pl[i] *cos(x*t) *sqrt(dt) *dW/[j][i];
Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
v
a
it
v

DA

44

e | FONTH
Adjoint Code Generation Rules

1. augmented primal section
1.1 duplicate active data segment
1.2 enable recovery of lost required primal values (e.g, x=sin(x);)

1.3 enable reversal of primal flow of control (e.g, count loops and enumerate
branches)

1.4 enable recovery of primal results

2. adjoint section

2.1 recovery of lost required primal values
2.2 reverse primal flow of control

2.3 increment adjoints (e.g, y=sin(x); ... z=cos(x);)
2.4 reset adjoints of overwritten primals to zero after use (e.g,
z=cos(y); ... y=sin(x);)

2.5 recover primal results

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a
it
it

A 45

snemros | IRANTH
et
gt

Adjoint Code Generation Rules

// augmented primal

for (int i=0;i<n;i++) {
tbr_T.push(x);
x+=dt*p[i] *sin(x*t)+p[i]*cos (x*t)*sqrt(dt)*dW[j] [i];
tbr_double.push(t);
t+=dt;
}

// adjoint

for (int i=n-1;i>=0;i--) {
t=tbr_double.top(); tbr_double.pop();
x=tbr_T.top(); tbr_T.popQ);
palil+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW[j] [i]) *xa;
xa=(1+dt*p[i]*t*cos(x*t)-p[il*t*sin(x*t)*sqrt (dt)*dW[j] [i]) *xa;
}

— SDE

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a

it
v

it

DA

46

Software and Tools

Adjoints by Overloading
Reverse Vertex Elimination on Adjoint DAG (Tape)

Engineering

We consider

Yo\ _ (o *sin(zg *z1)/x1
y1) \ sin(zo*x1)/x1 *C
implemented as

t :=sin(xg * x1)/x1
Yo ‘= o *t
Y1 =t*c

yielding SAC

[cos(v2)]

Vg ‘= X * X1
v3 1= sin(vg)
Vg4 ‘= ”Ug/.Tl
Yo = T * Vg
Y1 = Vg *xC

Adjoint DAG for some passive value c.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a
it
v
it

DA

Adjoints by Overloading

Register (Independent Inputs with Tape)

Software and Tools
for nal

RWTH
:‘. 5: yo(*) Z‘. 6: y1(xc)
. v ol RO :
e L .
D4
[1/1“1’]“ . ‘
S o =7
['rr,/,]‘ : 3: sin g T ::7
N LT
[COS(!,‘z)].A
: 2 %
e ~
fo1]

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O» «F>»

it
a
it
v

DA

48

Adjoints by Overloading
Record (Tape)

saemons | IRANTHL
et
ety

L5 ()

vl

6: y1(xc)
v :

[oa]

Vg ‘= X *T1

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O» «F>»

it
a
it
v

DA

49

Adjoints by Overloading
Record (Tape)

saemons | IRANTHL
et
ety

L5 ()

vl

6: y1(xc)
v :

[oa]

Vg ‘= X *T1

v3 = sin(vg)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O» «F>»

it
a
it
v

DA

50

Adjoints by Overloading
Record (Tape)

saemons | IRANTHL
et
ety

L5 ()

vl

e

6: y1(xc)
v :

Vg ‘= X * 1
: v3 1= sin(vg)
[va]
Vyq ‘= ’Ug/.’ﬂl

Naumann, Risk AAD Masterclass, 21-22 March 2018

«Or «F»r <«

it
it
v

DA

51

Adjoints by Overloading
Record (Tape)

Software and Tools
for nal

Engineering

6: y1(xc)
R :

Vg ‘= X %1
v3 1= sin(vg)
Vg ‘= ’U3/$1

Yo = To * Vs

Naumann, Risk AAD Masterclass, 21-22 March 2018

«Or «F»r <«

DA

52

Adjoints by Overloading

somemaros | IRANTHL
Ergocg
Record (Tape)
Vg ‘= X * X1
v3 1= sin(vg)
vy = w3/
Yo = To * Vg
Y1 = Vg xC
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F>r = = E DA 53

Adjoints by Overloading —
Seed ‘ -

Vg ‘= X * 1
v3 = sin(vg)
vy 1= w3/

Yo = T * Vg
Y1 = Vg *xC
Yo, =1
Y1 =7
IEO(I) :?

[eos (v2)] 1) =
U2(1> =
U3y -
1)4(1) =0

it
v
a
it
v
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F>r < A

Adjoints by Overloading
Interpret (Tape)

snemros | IRANTH
et

Engineering

Vg ‘= X * X1

v3 1= sin(vg)

Vg = U3/$1

Yo = To * Vg

Y1 = Vg xC
Vagy T = CH Y1

Context-sensitivity:

Vaggy+ = Ck Y1,

=

V4 *= Vdg, + c *x Y1y -

Note: Need to store DAG yields infeasible PMR in most application scenarios.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr <

it
v
a
it
v
it

A 55

Adjoints by Overloading
Interpret (Tape)

saemons | IRANTHL
et

Engineering

Vg ‘= X * X1

v3 1= sin(vg)

vy = w3/

Yo ‘= T * Vg

Y1 = Vg xC
Vgt =C* U,
V4T = T0 * Yo,
Lo, = V4 * Yo,

Naumann, Risk AAD Masterclass, 21-22 March 2018

«Or «F)»r <«

it
v
a
it
v
it

DA

56

Adjoints by Overloading
Interpret (Tape)

saemons | IRANTHL
et

Engineering

[('),:m Lo,)

Vg i= 2T * T1

v3 1= sin(vg)

vy 1= v/

Yo = T * Vg

Y1 = Uy xC
V)t =C* Y1,
V4t = To * Yoy,
oy, T = V4 * Yo,

wi=1/x;
U3(p) T = UK Vagy
LL‘l(l) — = Ug xU* ’U4(1)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
v
a
it
v
it

DA

57

Adjoints by Overloading
Interpret (Tape)

saemons | IRANTHL
et

Engineering

[Oyooy,] [0, 2145,

Vg2 ‘= 2T * 1

v3 1= sin(vg)

vy 1= v3/T1

Yo = T * Vg

Y1 = Vg Xk C
Vit = C* Y,
V4t = To * Yoy,
oy, T = V4 * Yo,

wi=1/x,
’U3(1)+ = U ¥ Vg,
931(1)— = Vg *UX* "U4(1)

V2, + = cos(z2) * V3,

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
v
a
it
v
it

DA

58

Adjoints by Overloading
Interpret (Tape)

saemons | IRANTHL
et

Engineering

[Oyooy,] [0, 2145,

Vg ‘= X *T1

v3 = sin(vg)

vy =3/

Yo = T * Vg

Y1 = Vg *xC
Vit =C* Y1,
U4y T = To * Yo,
Zonyt = V4 * Yoy,

wi=1/zy
U3y T = UK Vagy,
2111(1)— = Vg *U* ’U4(1)

Vo, + = cos(z2) * V3,
xom—l— =Ty ok Uz
L1yt = o * U2,

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
v
a
it
v
it

DA

59

Adjoints by Overloading

Harvest

snemros | IRANTH
et
gt

Vg ‘= X *T1

vz 1= sin(vg)

vy 1= v3/T1

Yo = T * Vg

Y1 = Vg X C
V4t =Cx U,
V4T = T0 * Yo,
oy, T = V4 * Yo,

wi=1/z
U3y = UK Vagy
xl(l) — = Ug *xU* ’U4(1)

vyt = cos(zq) * V3,
Loyt = T1 % Uy,
.731<1)+ = Zo * U2,

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
v
a
it
v
it

DA

60

Adjoints by dco/c++ menere | RWTH

Scalar Adjoints (dco: :gatis<double>)

#include "dco.hpp"

typedef dco::gals<double> DCO_A_MODE; // adjoint mode
typedef DCO_A_MODE::type DCO_A; // adjoint type
typedef DCO_A_MODE: :tape_t DCO_A_TAPE; // tape type

vector<double> driver(double& xv, vector<double>& pv,
const vector<vector<double>>& dw) {

int n=dW[0] .size(); vector<double> g(n+1,0);
DCO_A x0=xv; vector<DCO_A> p(n); dco::value(p)=pv;
DCO_A_MODE: : global_tape=DCO_A_TAPE: :create(); // create tape
DCO_A_MODE: :global_tape->register_variable(x0); // record ...
DCO_A_MODE: :global_tape->register_variable(p); // ... active inputs
DCO_A x=x0; // lock overwritten active input
euler_maruyama(x,p,dW); // record intermediates
DCO_A_MODE: :global_tape->register_output_variable(x); // record ...
dco::derivative(x)=1; // ... and seed active output
DCO_A_MODE: :global_tape->interpret_adjoint(); // propagate adjoints
gl0]=dco: :derivative(x0); // harvest from locked active input
for (int i=0;i<n;i++) gli+1]=dco::derivative(p[i]); // harvest
DCO_A_TAPE: :remove (DCO_A_MODE: :global_tape); // remove tape
return g;

it
v
a
it
v
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr < A

61

Hands On

snemros | IRANTH
gt

For given PDE and/or LIBOR codes ...

write tangent code + driver

vV Vv Vv Y

use dco/c++ to generate tangent code; write driver
write adjoint code + driver

use dco/c++ to generate adjoint code; write driver
. cross-validate, race

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
it
v

DA

62

Improvements

“Low Hanging Fruits”

snemros | IRANTH
et
gt

» vector modes

» pathwise adjoints

» preaccumulation

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

A 63

e | FONTH
Discussion

higher-level elementals

detection and exploitation of sparsity

vector modes

mixed precision

nested tangents / adjoints / finite differences

smoothing

vV V. vV vV VvV VY

scripting and syntax-directed adjoints by interpretation

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a
it
v
it

DA

64

Outline

saemons | IRANTHL
b
ety

Second-(and Higher-)Order AD

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
a
it
v

DA

65

Second-Order AD

Summary of Results

W.log lety=F(x), F:R" > R:

1. 2nd-order tangent AD: (1,2 = <O V2R . x®) o V2F at O(n?)-POC

- 2nd-order adjoint AD: x () = y(1) - VF2 - x(2) = V2F at O(n) - POC and
V2F -x® at O(1) - POC

. three mathematically equivalent combinations of dco/c++ types for
second-order adjoint

4. tensor projections for multivariate vector functions

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr «Er <

it
v
it

A 66

Second Derivatives

Multivariate Scalar Functions

Initially we consider multivariate scalar functions
y=F(x): Dp CR"™ = Ir C R in order to simplify the notation.

We assume F' to be twice continuously differentiable over its domain Dp
implying the existence of the Hessian

d*F

%2

V2F(x) = (x).

S

For multivariate vector functions the Hessian is a three-tensor complicating the
notation slightly due to the need for tensor arithmetic; see later.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr o«

it
v
a
it
it

A 67

Second-Order Finite Differences

d Tools
nnnnnnnnnnnnn

~

A second-order central finite difference quotient
f o

f(x"+ (ej +e)-h)

— f(x"+(ej —ei) h)
—f(x°+ (e; —ej) - h) + f(x* — (ej +e;)-h)| /(4-h?)
yields an approximation of the second directional derivative
yh2) = xW7T V2 f(x) -x? (w.lo.g. m=1)
as
d2f O)~ df(x +e;-h)— d‘z(x —e;-h)
degde; 77 2-h
f(x"+e;-h+e-h)— f(x"+ej-h—e; h)
2-h
_ h _ 0 . h—e h
_ f(X e] + €; -) f(X e] €;) /(2 . h)
2-h
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> «Fr «Er «E>» E DA

68

Second-Order AD

saemons | IRANTHL
et
iz B e

Tangents

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O»r «F>»

it
a
it
v

DA

69

Tangents of Tangents
Computer Scientist's View (Simplified)

nnnnnnnnnnnnn

A second derivative code F(12) : R" x R" x R" x R - R x R x R x R,
generated in Tangent-of-Tangent (TT) mode computes

Yy
(2)
3;(1) - F(1’2)<X, X(2),X(1)7X(1,2)),
y2
as follows:
Y F(x))
y(l) T VF(x) - x(1)
y(1:2) xWT . V2P (x) - x® 4+ VF(x) - x(12)

Note: In context of chain rule:) and y® required and non-vanishing x(*:2)

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr «Er <

>

A 70

Tangents of Tangents

Derivation

nnnnnnnnnnnnn

Directional differentiation in tangent mode of the first-order tangent model

Yo\ _ dFF(X)
y 09 ()

in direction (x(? x(12)T yields

y
d
b\ <y“>> x®

=0
—_——~
dy
. — | . (2 Cx(1,2)
b x0) x“’”) RN
D @) Y 02)
[ym x (DT 4ECO T, d2;<x> _dzgﬂ dF(x) <@
= nT d?F(x)
x0T L£E6

x@ 4 df(X) . x(1:2)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

A 71

Tangents of Tangents

Accumulation of Hessian

1)T

V2F(x) - x?

for x(12) = 0; harvesting from y(12)

accumulation of the whole Hessian element-wise by seeding input directions
x(M € R™ and x(®) € R"™ independently with the Cartesian basis vectors in R
=4

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
v
a
it
v

DA

72

Tangents of Tangents
... on Tangent-Augmented Tangent DAG

Software and Tools
for

fonal
Engineering

@ _ 4y
vo= ds
o dF(X) (2)
T dx x
(1,2) — dy(l)
y T ds
_ dF(x)

dx

2
x0T dFEE)
dx2
See also AD of Inner Product.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O» «F>» «

it
it
v

DA

73

Tangents of Tangents

Code Generation Rules

snemros | IRANTH
gt

1. Apply tangent code generation rules to first-order tangent code
2. Write appropriate driver

3. Parallelize / vectorize accumulation of the Hessian (optional)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
a
it
v

DA

74

Tangents of Tangents by dco/c++

saemons | IRANTHL
et

Cheat Sheet s

dco::

y F(x)
y®2) VF(x)-x(2
g | = VF(x)-xM)
y(1:2) <1 V2F(x) - x?) + VF(x) - x(1:2)
:value(dco: :value(v))==dco: :passive_value(v)

1
2 dco::derivative(dco::value(v))
3 dco::value(dco::derivative(v)
4 dco::derivative(dco::derivative(v)
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> «Fr «Er «E>» =

A 75

Tangents of Tangents by dco/c++ L
Driver: y<1'2) =xMT. VQF(X) x4 VF(x) - x(1:2) o

#include "dco.hpp"
typedef dco::gtis<double>::type DCO_T; // tangent type
typedef dco::gt1s<DCO_T>::type DCO_TT; // tangent-of-tangent type

vector<vector<double>> driver(double& xv, const vector<double> &pv,
const vector<vector<double>>& dw) {
int n=pv.size();
vector<DCO_TT> p(n); dco::passive_value(p)=pv; // zero tangents
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[il))=1; // seed
for (int j=0;j<=i;j++) {
dco::value(dco: :derivative(p[j1))=1; // seed
DCO_TT x=xv;
euler_maruyama(x,p,dW); // overloaded primal
ddxdpp[i] [jl=dco::derivative(dco::derivative(x)); // harvest
dco::value(dco: :derivative(p[j]))=0; // reset

18 }
19 dco: :derivative(dco: :value(p[il))=0; // reset
20 }
21 return ddxdpp;
2}
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»r» «E>» «E>» E DA 76

Second-Order AD

Naumann, Risk AAD Masterclass, 21-22 March 2018

Adjoints

«4O0r «F>» « =>»

DA

7

Tangents of Adjoints

Computer Scientist's View (Simplified)
A second derivative code

is
nnnnnnnnnnnnn

-

FP R*"xR"xRxR—>RxRxR"xR"
generated in Tangent-of-Adjoint (TA) mode computes

9

Yy
(2)
Yy _ (2 (2) (2)
Xglg - (X’ X ay(1)7 y(l)))
2
X(1)
as follows:
Y F(x)
y2 _ VF(x) -x®
W) V)T un)
X(1)

2
yay - VEF(x) - x® + VEx)T -y
Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «F»r «)

<

>

DA

78

Tangents of Adjoints

Derivation

Directional differentiation in tangent mode of the first-order adjoint model

()= (s27,,)

dx y(l)
in direction (x(()7 yields
=0

2 d(/) 2 SN
yt?) _ */ x®\ ﬂ.x(2>+ﬂ.y<2>
@ | =7 o) | = | dy (1)

X(1) (xyw) \¥0) (1)
dx() x®@ 4 dxa (2)
dx dy(1) Y
[xu):wl)'dﬁxﬂ? dzdi(zx)T:ddeg)] =

% x®
2 T
vy - e x® 4 4R

X

(2)
Y

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

DA

79

Tangents of Adjoints

Accumulation of Hessian

Software and Tools

Engineering

Yy - V2F(x) -x®

(O

. accumulation of the whole Hessian column-wise by seeding input dlrectlons
x(2) € R™ with the Cartesian basis vectors in R" for y(;) =1 and y(l) =0;
harvesting from x\?)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

>

DA

80

Tangents of Adjoints
. on Tangent-Augmented Adjoint DAG

snemros | IRANTH

for Computational
Engineering

@ = dy
Y= s
_ dF(X) (2)
T odx X
dx
(2 —)
X1) T Tgs
=ya) - VIFx) - x? + VFx)T -y
Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «F»r « =

v
a
it

v
it

DA

81

Tangents of Adjoints

Code Generation Rules

snemros | IRANTH
gt

1. Apply tangent code generation rules to first-order adjoint code
2. Write appropriate driver

3. Parallelize / vectorize accumulation of the Hessian (optional)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
a
it
v

DA

82

Tangents of Adjoints by dco/c++
Cheat Sheet

Software and Tools
for Computational

Engineering

N

dco::
dco::

y F(x)
y2) . VF(x) - x(2)
Xy | VF(x)T - Y1)
2
X Yy VEF(x) - x®) + VFx)T -y}

:value(dco: :value(v))==dco: :passive_value(v)
derivative(dco: :value(v))

::value(dco: :derivative(v)
dco::

derivative(dco::derivative(v)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

DA

83

Tangents of Adjoints by dco/c++ menere | RWTH

Driver: xg; =y - V2F(x) - x® + VF(x)T - y((f)) | i

#include "dco.hpp"

typedef dco::gtis<double>::type DCO_T; // tangent type

typedef dco::gals<DCO_T> DCO_TA_MODE; // tangent of adjoint mode
typedef DCO_TA_MODE::type DCO_TA; // tangent of adjoint type

typedef DCO_TA_MODE: :tape_t DCO_TA_TAPE; // tape

typedef DCO_TA_TAPE: :position_t DCO_TA_TAPE_POSITION; // tape position

vector<vector<double>> driver(double& xv, const vector<double> &pv,
const vector<vector<double>>& dw) {
int n=pv.size();
vector<DCO_TA> p(n); dco::passive_value(p)=pv;
vector<vector<double>> ddxdpp(n,vector<double>(n,0));
DCO_TA_MODE: : global_tape=DCO_TA_TAPE: :create(); // create tape

DCO_TA_MODE: :global_tape->register_variable(p); // register active input

DCO_TA_TAPE_POSITION tpos=DCO_TA_MODE::global_tape->get_position(); // mark

for (int i=0;i<n;i++) {
dco::derivative(dco::value(p[i]l))=1; // seed tangent
DCO_TA x=xv;
euler_maruyama(x,p,dW); // overloaded augmented primal

DCO_TA_MODE: :global_tape->register_output_variable(x); // register ...

it
v
a
it
v
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr < A

84

Tangents of Adjoints by dco/c++ cenere | RWTH

Driver: xgi =ya) - V2F(x) x@ VF(X)T . y((2)) Il

Engineering

1

dco::value(dco::derivative(x))=1; // and seed adjoint output
DCO_TA_MODE: :global_tape—>
interpret_adjoint_and_reset_to(tpos); // propagate
for (int j=0;j<=i;j++)
ddxdpp[il [jl=dco::derivative(dco::derivative(p[jl)); // harvest
for (int j=0;j<n;j++) {
dco::derivative(dco: :derivative(p[j1))=0; // reset
dco::value(dco: :derivative(p[j]))=0; // reset
}
dco: :derivative(dco: :value(p[i]))=0; // reset
}
DCO_TA_TAPE: :remove (DCO_TA_MODE: : global_tape); // remove tape
return ddxdpp;
}

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr <

it
v
a
it
v
it

DA

85

Adjoints of Tangents

Computer Scientist's View (Simplified)
A second derivative code

is
nnnnnnnnnnnnn

F((Ql)):RnXRnXRXR%RXRXRnXRn

)

generated in Adjoint-of-Tangent (AT) mode computes

)
Lo | = e
x()
as follows:
Y F(x)
y VF(x)-x(")
x@ | VEG)T ypy)
Xt o)

-V2F(x) - x4 VF(x)T- Y(2)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «F»r «)

<

>

DA

86

Adjoints of Tangents

Derivation

Directional differentiation in adjoint mode of the first-order tangent model

y _ ([Fx
y 4G ()

in direction (y(2) ygi)T yields

T
Y
d
X(2 <y(1)>
D)=
X(2)

dy T 0T (1)
= Vet Y
: y(%) T

dxx®) \v) | o

T (1)
PG AC) + dx(l) Y
—_——
=0
ay® _ ()T d?F) . d?Fea T _d?F(x) dr(x) T (1) d>°F(x) 1
[[X2 ax? T ax? o Y@ TV T -x()
aF) T e
dx (2)
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> «Fr «Er «E>» E DA

87

Adjoints of Tangents
... on Adjoint-Augmented Tangent DAG

Software and Tools
for Computational
Engineering

= - T (1)
@ = @ = VEE)T y
dtT
X(2) = E
= VF)T y) +) - VIF(x) - xD
See also Eqn. (117).

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F»

it
a
it
v

DA

88

Adjoints of Tangents
Accumulation of Hessian (Complexity)

Software and Tools
k

Engineering

y((fg -V2F(x) -x(

... harvesting of the whole Hessian column-wise by seeding input directions
x(1) € R™ with the Cartesian basis vectors in R" for ygg =1, %2 =0, and
y((;; = 0; harvesting from x5).

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40)>» «F»r « =

Er <«

>

A 89

Adjoints of Adjoints

Computer Scientist's View (Simplified)
A second derivative code

Fao):R"xR"xRxR—=RxR"xR" xR,
generated in Adjoint-of-Adjoint (AA) mode computes

Yy
Xy | = f <. x(1:2)
X(2) (1,.2) (%, Y1), Y(1,2))
Y@a,2)
as follows:
Yy F(x)
X | ._ VEx)" -y
X(2)
Y@1,2)

Yya) - V2F(x) - X(1,2) + VF(x)T- Y(2)
VF(X) . X(l,2)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «F»r «)

<

>

DA

90

Adjoints of Adjoints

Derivation

Directional differentiation in adjoint mode of the first-order adjoint model

(Xi)) B (dF(’iTX))

dx ’ y(l)
in direction (y(2) X(LQ))T yields

T
d(y)
(X(z) > = _*®
Ya,2)

T dx 1y L
% Yot s X(2)
~<y<2)> dyT_y +mT.X
dxya) \Xa.2) dyy YOt @e X0
=0
¢ X T d2
[X(l):y(1£VF(X)T] 11;71) Yy +Ya) Idx2 X(1.2)
dF(x)
Tax o X(12)

Naumann, Risk AAD Masterclass, 21-22 March 2018

A 91

Adjoints of Adjoints
... on Adjoint-Augmented Adjoint DAG

Software and Tools
for Computational
Engineering

dt T
X2 = x
=VFx)" y@) +ya) - VF(X) - X2
dt T
Y
1,2) = dy
= VF(X)T . X(lyg)
See also Eqn. (117)

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

it
it
v

DA

92

Adjoints of Adjoints
Accumulation of Hessian (Complexity)

Software and Tools
k

Engineering

y(l) . VQF(X) . X(1’2)

... harvesting of the whole Hessian row-wise by seeding input directions
(1,2

b4

) € R™ with the Cartesian basis vectors in R" for Yy =1, X2y = 0, and
Yc2) = 0; harvesting from x5y = 0.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40)>» «F»r « =

Er <«

>

DA

93

Second Derivatives

Multivariate Vector Functions

We consider multivariate vector functions

y:F(X)ZDFQRn—)IFQRm.

We assume F' to be twice continuously differentiable over its domain Dp
implying the existence of the Hessian

2
V2F(x) = F

=z X
The Hessian is a three-tensor, that is

V2F(x) € R™"",
tensors.

The notation needs to be extended to accommodate projections of Hessian
Naumann, Risk AAD Masterclass, 21-22 March 2018

«0)>» «F>»

it
v
a
it

DA

94

Jacobian Projections T -
Recall ... fromput

eg. A=V?F, F:R®* > R*

Tangent Projection Adjoint Projection

<Av>=A-v <w,A>= AT -w= (vl AT

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> «(Fr «E>» «EF

v
it

A 95

Hessian Projections —
(First-Order) Tangent Projection -

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «F»r» «E>» «E>»

DA

96

Hessian Projections
(First-Order) Adjoint Projection

Naumann, Risk AAD Masterclass, 21-22 March 2018

«40>» «Fr «E»r» <«

A 97

Hessian Projections

wnnneres | RVNTH
I e
Second-Order Tangent Projection
5
3 A
1
RN EAERaC P22 — 1
1
3
3
o 3 5
A

Note:

<Av,u>=<< Av > u>=<< Aju >0 >=< A, u,v >
due to symmetry; see, e.g., [Naul2] for proof.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

DA

98

Hessian Projections

Second-Order Adjoint Projection

Software and Tools
k

9
Engineering

Note:

due to symmetry; see, e.g., [Naul2] for proof.

<w,Av>=<w <, A, v >>=<<w,A > v>=<v,<w,A>>=<v,w,A>

Naumann, Risk AAD Masterclass, 21-22 March 2018

«4O0» «F»r «

DA

99

Tangents of Tangents -
. on Tangent-Augmented Tangent DAG s

for passive x(V (x(*? = ().

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O» < Fr <

i
v
a

i
v

Uy

DA

snemros | IRANTH

Tangents of Adjoints

on Tangent-Augmented Adjoint DAG

Software and Tools
for fonal
Engineering

Naumann, Risk AAD Masterclass, 21-22 March 2018

T
1

ds ds
_d<yu),VF >
N ds
dVF
TEYm g
dVF dx
TEYO S Tds T

=<ya),< VF,x® >>

for passive y (1) (ygg)

«O)>» «F»r «

it
v
i
v

DA

101

Adjoints of Tangents

on Adjoint-Augmented Tangent DAG

Software and Tools
for Computational

Naumann, Risk AAD Masterclass, 21-22 March 2018

Lo dt__ dt dVF.-x
@~ ax dy ™)’ dx
__ At d<VF xM >
dy@)’ dx
dt

_ cWVE
Ok dx ’
=<y, < V' FxV >>

«O)>» «F»r «

Er <

>

DA

102

Adjoints of Adjoints

on Adjoint-Augmented Adjoint DAG

Software and Tools
for Computational

Engineering

r _dt __dt dVFT-yq
x<2) dx =< dX(l)’ dx >
dt d< ,VF
=< (IS YW, V2
dX(l) dx
At dvEF
- dX(1)7 Y1) dx

=<X(1,2), < Y(1)» ViF >

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

it
v
i
v

DA

103

Outlook: Higher Derivatives —

e.g, Tangents of Tangents of Adjoints o
y =Fk)
dF
y® = & @
dx
dF
y@ & @
dx

2
@3 ._ TF @ o

dE (2,3
y Tz X x> <o x>

, dF
X1 =<Y@u) ix >

X =<V, % >+ <y, %’X@ >
X =<y %Z >+ <yw, szxm) >
i =<y G >+ < e x> <y, e x>
+ <y, %,x@),x(?’) >+ <ya), %,x@’?’) > .
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr CE> E>» = 9DAC

Hands On

Software and Tools
for

Engineering

For given PDE and/or LIBOR codes ...

write second-order tangent code + driver

vV Vv Vv Y

use dco/c++ to generate second-order tangent code; write driver
write second-order adjoint code + driver

use dco/c++ to generate second-order adjoint code; write driver
cross-validate, race

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

it
v
i
v

DA

105

Outline

saemons | IRANTHL
b
ety

Beyond Black-Box AD

Naumann, Risk AAD Masterclass, 21-22 March 2018

DA

106

Recall ...

The adjoint of a program y = x, = F'(x = x¢) computes

Xoy = X(l)l =VFx)T. Y(l)[:VFlT-(...(VFqT - Xqgy))
61’{77, X ER,n) X1l

assuming availability of adjoint elemental functions (adjoint elementals)
Xi1gy = VE(x1)" - X

fori=gq,...,1 (— reversal of data flow).

The minimum requirement for adjoint AD (AAD) is the implementation of
adjoint versions of the intrinsic operations (+, %, ...) and functions
(sin, exp, ...) of the given programming language.

Their naive combination yields algorithmic adjoint programs, which may turn
out infeasible for various reasons. Hierarchies in granularity and mathematical
semantics must be exploited in “real world" AAD.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «(Fr «E»r <

1y
v
it

A 107

Adjoint Elementals and Programs

An adjoint elemental F;(;) comprises both data and instructions necessary for
evaluating Xi—l(l) = VFi(Xi_l)T : Xz(l)

An adjoint program F(y) is a partially ordered sequence of evaluations of
adjoint elementals.
An appropriately augmented version of the given implementation of F' (the

=
forward (augmented primal) section F'(;) of the adjoint program) is executed to
record data required for the evaluation of

Xi1y = Fiq)(xi—1, Xiqr)) = VF(xi—1)" - Xiqy fori=gq,...,1

-~
by the reverse (adjoint) section F'(1 of the adjoint program.

The tape of the adjoint program is a (partially ordered) concatenation of the
tapes of the adjoint elementals. Basic AAD records the entire tape
homogeneously based on algorithmic adjoint elementals followed by its use for
the propagation of adjoints.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «(Fr «E»r <

1y
v
it

A 108

Beyond Black-Box Adjoint AD
Gaps in Tapes

Let Fj (1) not be implemented by basic AAD.

A gap is induced in the tape of the adjoint program

Xk—1(1)

Xay=Xo)VF .. - VE (1) - (VEG - (VES - Xgqy))

Xk (1)

to be filled by a custom version of Fj ().

For example, checkpointing methods decrease the maximum tape size by storing
Xg_1 in the forward section followed by the evaluation of the primal Fj and
postponing the generation of the tape for Fay, to the reverse section of F{y).

Further examples include the implementation of symbolic adjoint elementals,
preaccumulation and approximation of Jacobians of local black boxes by finite
differences.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «(Fr «E»r <

1y
v
it

A 109

AD of Implicit Functions

Let F(x(p),p) = 0 with F : R"™* x R"® — R"* continuously differentiable
wrt. both x and p. Then from
dFF O0F dF dx
—_—— g — . — = 0
dp Op dx dp
follows (/mplicit Function Theorem)

dx

_ dF' OF
dp dx op
implying tangents
-1
X0 = & o A OF g
dp dx op
—. (1)
and context-free adjoints
_dx” _oF" ar~"
P = dp 1) p

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

A 110

Tangent Nonlinear Equations o
40
5
2 p=0 ’ ~(2.I.d 1>_p(1>:2.z (dj_pm),pmzo
d p
=z(1)
(@*,2* W) = S(p,p™) Sz, p)
Y A
S(p+ Ap))
¥~ H_P 9
VP) =2

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)» «F»

it
v
a
i
v

DA

111

Tangent Nonlinear Equations by Hand o | RWNTH

Algorithmic Tangent

1 template<typename T> // primal
2 void newton(T& x, const T& p, const T& eps) {
3 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2%*x);
4}
5
6 template<typename T>
7 void tangent_newton(T& xv, T& xt, const T& pv, const T& pt, const T& eps) {
8 while (abs(xv*xv-pv)>eps) {
9 xt+=pt/(2xxv) - (3./4.+pv/ (4*xV*xV)) *xt;
10 xv-=(xv*xv-pv) / (2*xV) ;
1 }
12}
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr «Er «E>» E HAQ 112

Tangent Nonlinear Equations by Hand
Symbolic Tangent

Engineering

snemros | IRANTH
et

template<typename T> // primal

void newton(T& x, const T& p, const T& eps) {
while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

}

template<typename T> // symbolic tangent

void tangent_newton(const T& xv, T& xt, const T& pt) {
xt=pt/ (2*xv) ;

¥

int main(int c, charx v[]) {

newton(xv,pv,eps); // primal
tangent_newton(xv,xt,pt); // symbolic tangent

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O» < Fr <

i
v
a

i
v

Uy

DA

113

Adjoint Nonlinear Equations

saemons | IRANTHL
et
ety

II/'(l)'%
22 —p=0

dx dx
oo (2 2 1) =2 (22 =
N
(¢*,G) = S(p)

=pP(1)

S(I*,I(l))
v
« S(p+ Ap) Z(1)
T*~ \/p - H=5 ?
S(G,(L’(l))

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

114

Adjoint Nonlinear Equations by Hand —L L))
Algorithmic Adjoint

template<typename T>
void adjoint_newton(T& xv, T& xa, const T& pv, T& pa, const T& eps) {
stack<T> tbr_T;
int i=0;
while (abs(xv*xv-pv)>eps) {
tbr_T.push(xv) ;
xv-=(xv*xv-pv) / (2*xV) ;
i++;
}
double y=xv;
for (int j=0;j<i;j++) {
xv=tbr_T.top(); tbr_T.pop(Q);
pat+=xa/ (2*xv) ;
xa-=(3./4.+pv/ (4xxv*xv)) *xa;
}

XV=y,

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O» < Fr <

it
v
a
1y
v
it

DA

115

Adjoint Nonlinear Equations by Hand
Symbolic Adjoint

Engineering

snemros | IRANTH
et

template<typename T> // primal

void newton(T& x, const T& p, const T& eps) {
while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

}

template<typename T> // symbolic adjoint
void adjoint_newton(const T& xv, T& xa, T& pa) {
pat+=xa/(2*xv); xa=0;

}
int main(int c, charx v[]) {

newton(xv,pv,eps); // primal
adjoint_newton(xv,xa,pa); // symbolic adjoint

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O» < Fr <

i
v
a

i
v

Uy

DA

116

AD of Inner Product

Let y = a”

- X.

Tangent

gy = a7 x4 aT . xD

Context-Sensitive Adjoint

amt =Ya) X
X+ =a-ya)
yay =0

Proof via algorithmic adjoint ...

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0>» «F» «E» « 3

DA

117

AD of Matrix-Vector Product

Llety =A-x.

Tangent

vy = 4D x4 4. xD

Context-Sensitive Adjoint

x+=A"yq)
A+ =y -x"
ya) =0

Proof via element-wise inner products ...

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0)>» «F»r « =»

<

i
v

DA

118

AD of Matrix-Matrix Product
Let Y = A- X.

Tangent

is
nnnnnnnnnnnnn

YO =AW x4+ 4. xD
Context-Sensitive Adjoint

Xyt =AYy

Agy+ =Yy - X7
Yy =0

Proof via (concurrent) column-wise matrix-vector products

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

DA

119

Generalization

Let A€ R™" X1 € R"™9 and B € R¥”. Then Y() € R™*? and

vO 4. xO.B = Xy :AT-Y<1) . BT
for Y(l) € R™*? and X(l) € R™™.

Proof: From matrix-matrix product ...

7 — 4. xM

< X(l) = AT . Z(l)

T
YW =2zM.B & Z,=Yy B
and substitution. W

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

120

AD of Linear Systems

Let Ax = b with invertable A € R"*", b € R" and x = x(4,b) € R"

Eqn. (118) yields tangents x(!) as solutions of the linear system

A.xD —pM 40 .«

as

Context-free adjoints follow immediately from x(1) = A=1. b1 — A-1. 4D . x
b(1> =A"T

()
Agy = (=477 -x

X1y -x' =) —bg) - x

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)>» «F»r «

i
v
Uy

DA

121

o Computtoral RWTH
AD of Nonlinear Systems

Let F(x(p),p) =0 with F': R™ x R" — R"* continuously differentiable
wrt. both x and p.

Tangents and adjoints are defined at the solution as

1 -
dF " OF)

1 — _ L2
* dx op
i.e, as solution of linear system 4 . x(1) = —g—i -pW , and
oFT arF~"
- = x
P(1) op dx (1) >
i.e, as solution of linear system ‘fl—iT - Z(1) = —X(1) followed by evaluation of

the adjoint Pa) = %T “Z(1) -

U.N., K. Leppkes, J. Lotz, M. Towara: Algorithmic differentiation of numerical methods:

Tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Trans.
Math. Soft., 2015.

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O» < Fr <

i
v
a

i
v

Uy

A 122

AD of Convex Optimizers

Unconstrained Case

both x and p.

Let #EPLP) _ (yith % :R™ x R™ — R"™ continuously differentiable wrt

Tangents and adjoints are defined at the solution as

d2 . —1
< LS

f
——5 " hern P
dx? Ox0p
i.e, as solution of linear system % x() = —;T{f; -pM) | and
orr " arr!
P = _m X2 " X(1)
i.e, as solution of linear system d; - Z(1) = —X(1) followed by evaluation of the
T

second-order adjoint p(;) = ;j—a]; “Z(1) -

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0>» «F» «E» «

>

DA

123

Algorithmic Adjoint ODE

over Symbolic Adjoint Nonlinear System |
Implicit Euler integration of the ODE

dx

for x € R" and with given initial value x(0) = x° yields

xi _ xi—1

_ i
Tt =G
and hence the solution of the nonlinear system

F(XZ,XZ_I) _ Xi _ Xi—l _ (ti _ ti—l) 3 G(Xl) =0
fori=1,...,m. To evaluate adjoints of the ODE’s final wrt. initial condtions
the symbolic adjoint nonlinear system

dF ™

i i i e
wiWJ@L@tly

i—1 1
(M>xm%>

«O)>» «4F» « =

=

Naumann, Risk AAD Masterclass, 21-22 March 2018

]

>

DA

124

Algorithmic Adjoint ODE

over Symbolic Adjoint Nonlinear System I
needs to be solved for i =m,...,1 as

dFr T

is
nnnnnnnnnnnnn

b 0= X
is followed by evaluation of the adjoint

i1 OF T

X1 T -1 PO T T A
implying
i—1
I - Xy =2
dFT i—1 i
o)Xy =X
dFT i—1 7
In . @ X(l) = X(l)
T
dF i1 Xi
i TR
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O0>» «Fr» «E» «E» E DA

125

Symbolic Adjoint ODE

o Compotaton RWTH
... turns out to be the same ... | o
Algorithmic Differentiation of the explicit Euler scheme
xThi=x"4+ (" -t G(x"), i=0,....m—1
for the primal ODE in adjoint mode yields
xél) = XZ(T)l + (T) - %T(x’) -Xﬁr)l
fori=m —1,...,0 and hence

i i+1
X(l) B X(l) _ _ET(Xi> L xitl
il gx)
that is, for m — oo (tT! — t') the explicit Euler scheme for the adjoint ODE

dX(1> B _dGT
dt

m o __
Tlx X(l), X(l) = X(l)(T) .
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O0>» «Fr» «E» «E» E DA

126

Symbolic Adjoint ODE

... turns out to be the same ... Il

Note that the primal x? are accessed in reverse order of their computation.
Implicit Euler integration yields

Xy =X _ dGT

T x (x') - x{

i — i+l = (1)
and hence Xél) as the solution of the linear system

i i i en
xipy + (¢ — 1) &2

o o daT
o () x{y = (I+ (8 =) =
T
<I o (ti+1 o ti) . dG

dx (Xi)> X =

fori =m —1,...,0. Note equivalence of symbolic adjoint ODE to its
algorithmic adjoint over symbolic adjoint nonlinear solver.
Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0>» «F» «E» « 3

DA

127

Symbolic Adjoint ODE

... turns out to be the same ... Il

Explicit Euler integration of the adjoint ODE yields
i i i— o 4Gt o

Xy =X — (7 =) o (<) - x{y)
i i1y AGT
=x(p) + ((t" =t 1)'& (x") - x{1)

fori=m-—1,...,0.

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O0)>» «F»r « =»

<

i
v

DA

128

Hands-On

Software and Tools
for Computatior

al
Engineering

PDE code.

Implement symbolic tangent and adjoint versions of the given implict Euler

Naumann, Risk AAD Masterclass, 21-22 March 2018

129

Checkpointing
Motivation: Store-All

snemros | IRANTH

for Comy

putational

Engineering

()—— i

(8,1) «

(> @ (11,2) +
(14, 3) +

(17,4) +

@—’ (14, 4) «+

(11,4) +

dz’ (5,4) +

Q (0,4) «

Note: PMR ~ |E| + |V|, POC ~ |V|

register z°, p
compute z' and record
compute 2 and record

compute 2 and record

compute x* and record; return z*; set z‘(ﬂ)

compute x‘z’l) s p?l); release x4
compute w%l) s p?l); release x3
compute m%l) s pzl); release xo
compute 95(()1) , p?l); release x1

return z?l), P(1), release zo, p

Naumann, Risk AAD Masterclass, 21-22 March 2018

A
n}
v
a
v
a
i
v
a
i
v
Uy

DA

130

Checkpointing
Motivation: Store-All

B, Sotwrs s oo

RWTHAACHEN
i UNIVERSITY

(Z N [EK
: \
ol bl o {0
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr «Er «E>» E HAQ

131

Checkpointing

Motivation: Recompute-All

Software and Tools
for Computational
Engineering

(PMR,POC)
(6,0) +
(9,4) +
(6,4) «
9,7) «
(6,7) «
(9,9) «

register :1:0, P, store z

3 4

compute x°; compute x 4

and record; return x
set z?l); compute m(sl),p?l); release z*

3

restore z°; compute z2; compute z° and record

compute x%l) , p?l); release

2

restore 2°; compute z'; compute 22 and record

(6,9) < compute x%l),pél); release 2
, < restore and free x”; compute " and recor:
8,10 d free z° ! and d
Idm:’] (5,10) < compute x?l),p?l); release !
izt
l/'r“\1 (0,10) < return z?l), P(1); release zV,p
N2
Note: Recording single steps
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O> (Fr «Er «E>» E HAQ 132

Checkpointing

Motivation: Recompute-All e
N o oy
B I 04 (Q _{(O
So™= s NS
Vo \\; /]
lﬁ' \7:[’m liST‘ ls» \ OZJLs\ 04 -1 m
— = = > 4—)
11 o1 ot 31 ~3(0 [L B[4 O 3f1 1434
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O>» «Fr «=» «=)» = Ha

133

Checkpointing
Motivation: Trade-Off

snemros | IRANTH
e

for Comput
Engineering

da'
P
, ; N
@—>I 22)
N 7

(PMR,POC)
(6,0) +
(6,2) «

(12,4) +
(9,4) +
(6,4)

(11,6) +
(8,6) «
(5,6) «
(0,6) «

register 2°, p; store 2

compute x?

compute z* and record

set a:‘(ﬂ); compute 37?1)717?1); release z*
compute m%l) , p%l); release

restore and free z°; compute 22 and record

compute x%l) , p%l); release x?
compute x?l) , p?l); release z!

return z‘()l), P(1); release z%,p

Naumann, Risk AAD Masterclass, 21-22 March 2018

A
n}
v
a
v
a

i
v
a

i
v

Uy

DA

134

Checkpointing

Motivation: Trade-Off

connwars | IRANTHIAACHEN
W o™ UNIVERSITY

S “\1 _U_L
WL Seo -1zel

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O>» «Fr «=>»

«E>»

DA

135

Checkpointing Ensembles
Recall:

Pathwise Adjoint SDE

' Sotwrs s oo
n2 Engineering

HEN
UNIVERSITY

’0« UL‘ Ei!“
+42'q uz{q

+12[4 i12

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O>» «F»r <

it
v

DA

136

Checkpointing Evolutions

Live: Pathwise Checkpointed Adjoint SDE

connwars | IRANTHIAACHEN
W 0 UNIVERSITY
. o ,A\
[0y | 04
S[C \ , ’gfo
), ’ \
\ \.\\ /
| L
U.\l 4.1(L 5N ! !%‘4 ! ! lU”\
M 4 A4 ¢ 3(4 3] 1S 1434
Naumann, Risk AAD Masterclass, 21-22 March 2018 «O0)>» 4Fr <> « =) = DA

137

Checkpointing

CALL TREE REVERSAL

Example: Let PMR = 1110 ...

Software and Tools
for Computational
Engineering

+100{ +100 —100| -10C

+1000
PMR=1220, POC=0

—1000

Naumann, Risk AAD Masterclass, 21-22 March 2018

100 | 100 +100| +100 —100{ -100

1000
PMR=1110, POC=2200

1000 +1000 —-1000

DA

138

Checkpointing

CALL TREE REVERSAL (Heuristics)

Software and Tools
for Computational
Engineering

Smallest Memory Increase starts

from R =1 and yields ...

Largest Memory Decrease (LMD)

starts from R = 0 and yields ...

+10| +10 -10|-10

100 | 100 +100|{ +100 —~100{ ~10C

1000 +1000 ~1000
PMR=1120, POC=1200

R=(0,1):

+100| +100 —=100{ =100

1000 +1000 ~1000
PMR=1110, POC=1000

Largest Memory Increase (LMI) re-
mains at R =1 as R = (1, 0) infea-
sible

Naumann, Risk AAD Masterclass, 21-22 March 2018

a
v
a
i
v
a
i
v
Uy

A 139

Hands On

Software and Tools
for Computatior

al
Engineering

PDE code.

Implement an equidistant checkpointing scheme for given algorithmic adjoint

Naumann, Risk AAD Masterclass, 21-22 March 2018

DA

140

Outline

connwars | IRANTHIAACHEN
W o™ UNIVERSITY

Further AAD

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O>» «F»r <

it
v
it
v

DA

141

Further AAD

AAD on GPUs / meta-adjoint programming
Adjoint code design patterns
NAG AD Library
Further dco/c++
> file tape
» multiple (e.g, thread-local) tapes

» multiple (e.g, thread-local) adjoint vectors and (parallel) interpretation of
same tape

» minimum number of adjoint program variables
> just-in-time code generation and compilation / linking
inner product invariance debugging

vV v VY

v

Naumann, Risk AAD Masterclass, 21-22 March 2018 «Or «Fr CEr <

1y
v
it

A 142

Outline

connwars | IRANTHIAACHEN
W o™ UNIVERSITY

Conclusion

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O>» «F»r <

it
v
it
v

DA

143

Conclusion

The quality of an adjoint AD solution / tool is defined by
» robustness wrt. language features of target code
» efficiency of adjoint propagation

> flexibility wrt. design scenarios

» sustainability wrt. dynamics in user requirements,
software

AD is fun

personnel, hard- and

Naumann, Risk AAD Masterclass, 21-22 March 2018

«0O)» «F»

i
v
a
1y
v

144

“Optimality”
|

I'm sittin’ in front of the computer screen.

Newton's second iteration is what I've just seen.

It's not quite the progress that | would expect

from a code such as mine — no doubt it must be perfect!
Just the facts are not supportive, and | wonder ...

My linear solver is state-of-the-art.

It does not get better wherever | start.

For differentiation is there anything else?
Perturbing the inputs — can’t imagine this fails.
| pick a small Epsilon, and | wonder ...

| wonder how, but | still give it a try.
The next change in step size is bound to fly.
"cause all I'd like to see is simply optimality.
Epsilon, in fact, appears to be rather small.
A factor of ten should improve it all.

o)
)
n
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 =} A

145

“Optimality”
I

"cause all I'd like to see is nearly optimality.
A DAD ADADA DAD ADADA DADAD.

A few hours later my talk’s getting rude.

The sole thing descending seems to be my mood.

How can guessing the Hessian only take this much time?
N squared function runs appear to be the crime.

The facts support this thesis, and | wonder ...

Isolation due to KKT
Isolation — why not simply drop feasibility?

The guy next door's been sayin' again and again:
An adjoint Lagrangian might relieve my pain.
Though | don't quite believe him, | surrender.

| wonder how but I still give it a try:

o)
)
n
it

Naumann, Risk AAD Masterclass, 21-22 March 2018 =} A

146

“Optimality”
I

Gradients and Hessians in the blink of an eye.
Still all I'd like to see is simply optimality.
Epsilon itself has finally disappeared.

Reverse mode AD works, no matter how weird,
and I'm about to see local optimality.

Yes, | wonder, | wonder ...

| wonder how but | still give it a try:

Gradient and Hessians in the blink of an eye.
Still all I'd like to see ...

| really need to see ...

now | can finally see my cherished optimality :-)

www.stce.rwth-aachen.de/research/the-art

Naumann, Risk AAD Masterclass, 21-22 March 2018 «O0>» «Fr» «E» «E» E DA

147

Follow-up

Software and Tools
for nal

Engineering

naumann@stce.rwth-aachen.de
and

https://www.nag.co.uk/content/nag-and-algorithmic-differentiation

Naumann, Risk AAD Masterclass, 21-22 March 2018

«O)» «F»

it
v
a
i
v

DA

148

	First-Order AD
	Tangents
	Adjoints
	Hands On

	Second-(and Higher-)Order AD
	Tangents
	Adjoints
	Hands on

	Beyond Black-Box AD
	Implicit Functions
	Checkpointing
	Hands on

	Further AAD
	Conclusion

