
[Adjoint] Algorithmic Differentiation
([A]AD)

Risk Training Masterclass, London, 21-22 March 2018

Uwe Naumann

STCE, RWTH Aachen University, Germany

What is a (1st-order) Tangent?

Primal x = x(p) ∈ IRm defined implicitly:

r ≡ F (x,p) = 0; F : IRm × IRn → IRm

Tangent (forward sensitivities) x(1) = x(1)(p,p(1)) ∈ IRm :

r(1) ≡ F (1)(x(1),p,p(1)) = 0; F (1) : IRm×IRn×IRn → IRm

defined by

x(1) ≡ dx(p)

dp
· p(1)

p

x

r[F]

∂F
∂p

dx
dp

dF
dx

We distinguish between complete (d·
d·) and incomplete (∂·

∂·) sensitivities /
(partial) derivatives.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 2

Story in a Nutshell
Symbolic, Algorithmic, Approximate Tangents

r ≡ x2 − p = 0

x̌

r(1) ≡ F (1)(x(1), p, p(1)) = 0

x(1) = −dF

dx

−1
· ∂F
∂p
· p(1)

= − 1

2 · x
· (−1) · p(1)

x̌(1) ?
≈ x̃(1) ?

≈ x(1)

primal (r → 0)

Implicit Function Theorem

symbolic tangent (r(1) → 0)
OC = O(1) · POC

algorithmic tangent x̌(1)

OC = O(1) · POC

approximate tangent x̃(1)

OC = O(1) · POC

Notation: OC =̂ operations count; POC =̂ primal operations count

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 3

What is a (1st-order) Adjoint?

Adjoint (backward sensitivities) p(1) = p(1)(x(1),p) ∈ IRn :

r(1) ≡ F(1)(x(1),p,p(1)) = 0; F(1) : IRm×IRn×IRn → IRn

defined by

p(1) ≡
(
dx(p)

dp

)T

· x(1)

implies consistency

〈x(1),x
(1)〉 = 〈p(1),p

(1)〉

p

x

r[F]

∂F
∂p

dx
dp

dF
dx

⇒ necessary condition for numerical evaluation of tangents and adjoints

... hard to obtain by symbolic differentiation

... ensured by algorithmic differentiation

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 4

Story in a Nutshell
Symbolic, Algorithmic, Approximate Adjoints

r = x2 − p = 0

x̌

r(1) ≡ F(1)(x(1), p, p(1)) = 0

p(1) = −∂F

∂p

T

· dF
dx

−T
· x(1)

= −(−1) · 1

2 · x
· x(1)

p̌(1)
?
≈ p̃(1)

?
≈ p(1)

〈x(1), x(1)〉
?
≈ 〈p(1), p(1)〉

〈x̌(1), x(1)〉
!
≈ 〈p(1), p̌(1)〉

primal (r → 0)

Implicit Function Theorem

symbolic adjoint (r(1) → 0)
OC = O(1) · POC
PMR ∼ POC

algorithmic adjoint ř(1)
OC ∼ O(1) · POC
PMR ∼ POC

approximate adjoint p̃(1)
OC ∼ O(n) · POC

Notation: PMR =̂ persistent memory requirement

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 5

Tangents vs. Adjoints
Algebraic Perspective

Chain Rule on F : IRn → IRm (assuming differentiability of F,G and H)

y = F (G(H(x)︸ ︷︷ ︸
u∈IRp

)

︸ ︷︷ ︸
v∈IRq

) ⇒ dy

dx
=

dy

dv
· dv
du
· du
dx

Tangent
dy

dx
=

dy

dv
·
(
dv

du
· du
dx

)
Adjoint

dy

dx
=

(
dy

dv
· dv
du

)
· du
dx

Example: Dense local Jacobians for n = 10, p = 10, q = 10, and m = 1 :

1100 fma > 200 fma

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 6

Tangents vs. Adjoints
Combinatorics

I V. Mosenkis, U. N.: On Lower Bounds for Optimal Jacobian
Accumulation. To appear in OMS, 2018.

I U. N.: Optimal Jacobian accumulation is NP-complete. Math. Prog.
112(2):427–441, Springer, 2008.

I U. N.: Optimal accumulation of Jacobian matrices
by elimination methods on the dual computational
graph. Math. Prog. 99(3):399–421, Springer,
2004.

I A. Griewank and U. N.: Accumulating Jacobians
as chained sparse matrix products. Math. Prog.
95(3):555–571, Springer, 2003.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 7

Case Study: SDE

We are looking for the expected value E(x) of the solution x(p, T), T > 0 of
the scalar stochastic initial value problem

dx = f(x(p, t),p, t))dt + g(x(p, t),p, t)dW

with Brownian Motion dW and for x(p, 0) = x0.

Forward finite differences in time with time step 0 < ∆t� 1 yield the
Euler-Maruyama scheme

xi+1 := xi + ∆t · f(xi,p, i ·∆t) +
√

∆t · g(xi,p, i ·∆t) · dW i

for i = 0, . . . , n− 1, target time T = n ·∆t, parameter vector p ∈ IRl, and with
random numbers dW i drawn from the standard normal distribution N(0, 1).

The solution E(x(T)) is approximated using Monte Carlo simulation over (a
sufficiently large number of) Euler-Maruyama paths.

We are interested in sensitivities of E(x(T)) wrt. p.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 8

Case Study: SDE
Performance: m = 104, n = 103

dx = p(t) · sin(x(p(t), t) · t)dt + p(t) · cos(x(p(t), t) · t)dW ; t ∈ [0, 1]

Time (s) Memory (MB) rel. Time
Primal 1.2 79 1
FFD 380 80 317
AAD by hand 1.9 240 1.6
checkpointed AAD by hand 2.2 80 1.8
AAD by dco/c++ 1.7 728 1.4
checkpointed AAD by dco/c++ 1.9 86 1.6

FFD: Forward Finite Differences
AAD: Adjoint Algorithmic Differentiation

→ see code, race

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 9

Case Study: PDE

y = y(t, x, p) : IR× IR× IR→ IR is given as the solution of the 1D diffusion
equation

dy

dt
= p · d

2y

dx2

over the domain Ω = [0, 1] and with initial condition y(0, x) for x ∈ Ω and
Dirichlet boundary y(t, 0) and y(t, 1) for t ∈ [0, 1].

The sample solution codes use central finite difference discretization in space
within explicit and implicit Euler time integration schemes.

We are interested in
dy(1, x)

dy(0, x)

T

· v .

→ see code

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 10

Case Study: LIBOR

We consider the same LIBOR market model which was used in

M.B. Giles and P. Glasserman: Smoking adjoints: fast Monte Carlo Greeks.
RISK, January 2006.

to illustrate the benefits of AAD for simulations in finance.

See also

M.B. Giles: Monte Carlo evaluation of sensitivities in computational finance.
In Elias A. Lipitakis, editor, HERCMA Conference, Athens 2007.

and

http://people.maths.ox.ac.uk/~gilesm/codes/libor_AD/

→ see code

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 11

Adjoints Are Everywhere ...
e.g, Physical Oceanography

Let the run time of f be 1min.
Let the spatially distributed param-
eter (e.g, bottom topography) be
defined on a mesh with 106 cells.
Finite difference approximation of
the gradient of the average amount
of water flowing through the Drake
passage takes O(106)min (almost
2 years). The algorithmic adjoint
MITgcm computes the gradient with
machine accuracy in O(1)min (ap-
prox. 10min).

J. Utke, U.N. et al.: OpenAD/F: A Modular Open-Source Tool for Automatic Differentiation of Fortran

Codes, ACM TOMS, 2008.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 12

Adjoints Are Everywhere ...
e.g, Other Projects

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 13

Reading

U.N.: The Art of Differentiating Computer Programs. An
Introduction to Algorithmic Differentiation. Number 24 in
Software, Environments, and Tools, SIAM, 2012.

U.N., J. du Toit: Adjoint Algorithmic Differentiation Tool
Support for Typical Numerical Patterns in Computational Fi-
nance, JCF 2018.

K. Leppkes, J. Lotz, U.N.: dco/c++: Derivative Code by
Overloading in C++. Under Review for ACM TOMS.

U.N.: Adjoint Code Design Patterns. Under Review for ACM
TOMS.

K. Leppkes, J. Lotz, U.N., J. du Toit: Meta Adjoint Pro-
gramming in C++, Technical Report AIB-2017-07, Dept. of
Computer Science, RWTH Aachen University, Sep. 2017.

U.N., K. Leppkes: Low-Memory Algorithmic Adjoint Propa-
gation. CSC18.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 14

About Myself
^
^

0
•
^

'[.. •
-I

^
-•"v

^

.
'-

^
r

^•-.•t^

.r
^
i»

?
^
y

\
f

^
•^

',
y.

£
^
T"
r?

^
"

^

t'.
\.

^
-
•
/

v;-
%

^

^
. ^

^
 / "c

^
•
,^

'

^ ;
'^

^
^
z
A

^
 ' '^

f
\

,'

^
W

v
-

/I
\I

-•?

Ĵ
tI

t(

^
^
 •<

._
:i' ..^

ü

i

^
 .^

^
.

^

^

>t

^
1

<-
*

'
^

\ -
^
^

'
/
<

"
\

^
<

^
/

^

\
^
,
'.

\
-

- k
>;

f '^
^
'

r
>

,.' *
,
'-
i

y
-"

\
\

»
,

f

•»
-

^
Y

^
-
^
 f ',

.
:
J
^

\

f

.1

..^
^

'"v
.;

+

•
''^

'.
.»

^
>

-
^
-
 ^

 ^
»

k
'.''.<

: ^
.^

•^
.
-
>

^

\
<

^
•
^
•
'

f•A
 ^

.

/

h
. -<

•
' flh

^
T

^
 ^

d
/

r0-0&(0e
v
...

/
a0(fl

^
',ll.

.
-

1\
I.

„••
's

l
•^

f
»

l.
;

•I

^ ..'
?1-i-
•
\

}
>.

::'""" ^
..

/
^
\

}:
?

lv.
;.:

1
4C

/?
. r

\
\'-iM

3>
..A

M
<

<
r-/!

(i
§

^?^
i k

»
(

^
^

<
.-

-
^

^ \
^
.'.

^
/'

r^
A

 J
"

\~
^
-^

.
EA
:

'.-
.',

0

^

00
4
.

J
f>

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 15

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 16

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 17

First-Order AD
Summary of Results

Let y = F (x), F : IRn → IRm :

1. tangent AD
I y(1) = ∇F · x(1) ⇒ ∇F at O(n) · POC
I approximate tangents by finite differences

2. adjoint AD
I x(1) = ∇FT · y(1) ⇒ ∇F at O(m) · POC
I m = 1 ⇒ cheap gradients at O(1) · POC
I PMR ∼ POC

3. higher-level elemental functions, e.g, BLAS

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 18

First-Order AD

Essential Ingredients

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 19

Essential Ingredients
Linearized Single Assignment Code

The given implementation of F : IRn → IRm : y = F (x), can be decomposed
into a single assignment code (SAC)

vi = ϕi(xi) = xi i = 0, . . . , n− 1

vj = ϕj

(
(vk)k≺j

)
j = n, . . . , n + q − 1

yk = ϕn+q+k(vn+p+k) = vn+p+k k = 0, . . . ,m− 1

where q = p + m and k ≺ j denotes a direct dependence of vj on vk as an
argument of ϕj . All elemental functions ϕj possess continuous (local) partial
derivatives

dj,i ≡
dϕj

dvi
(vk)k≺j

with respect to their arguments (vk)k≺j at all points of interest.
A linearized SAC is obtained by augmenting the elemental assignments with
computations of the local partial derivatives dj,i.

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 20

Essential Ingredients
Labeled Directed Acyclic Graph

The SAC induces a directed acyclic graph (DAG) G = G(F) = (V,E) with
integer vertices V = {0, . . . , n + q} and edges V × V ⊇ E = {(i, j) : i ≺ j}.

The set of vertices representing the n inputs is denoted as X ⊆ V. The m
outputs are collected in Y ⊆ V. All remaining intermediate vertices belong to
Z (V.

A labeled DAG is obtained by attaching the dj,i to the corresponding edges
(i, j) in the DAG.

In the following DAGs are assumed to be labelled.

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 21

Essential Ingredients
Chain Rule

Let y = F (x) : DF ⊆ IRn → IF ⊆ IRm be defined over DF

and let
y = F (x) = G(H(x),x) = G(z,x)

be such that both

G : DG ⊆ IRp × IRn → IG ⊆ IRm

and
H : DH ⊆ IRn → IH ⊆ IRp

x

z[H]

y[G]

∂G
∂x

dH
dx

dG
dz

are continuously differentiable over their respective domains DG = IH ×DF

and DH ⊆ DF . Then F is continuously differentiable over DF and

dF

dx
(x∗) =

dG

dx
(z∗,x∗) =

dG

dz
(z∗,x∗) · dH

dx
(x∗) +

∂G

∂x
(z∗,x∗)

for all x∗ ∈ DF and z∗ = H(x∗).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 22

Essential Ingredients
Chain Rule on DAG

SAC:
z := H(x)
y := G(z,x)

DAG:

x

z[H]

y[G]

∂G
∂x

dH
dx

dG
dz

∇F (x) ≡ dy

dx
=

∑
path∈DAG

∏
(i,j)∈path

dj,i

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 23

First-Order AD

Tangents

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 24

Tangent Code
Computer Scientist’s View (Simplified)

A first-order tangent code F (1) : IRn × IRn → IRm × IRm,(
y

y(1)

)
:= F (1)(x,x(1)),

augments the computation of the primal function with the computation of a
Jacobian-vector product:

y := F (x)

y(1) := ∇F (x) · x(1)

The entire Jacobian can be harvested column-wise from the active output
directions (z(1),y(1))T ∈ IRm by seeding active input directions
(x(1), z(1))T ∈ IRn with the Cartesian basis vectors in IRn.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 25

Tangent Code
Active and Passive (Program) Variables

Variables for which derivatives are computed are referred to as active; x is
active input; y is active output.

Variables which depend on active inputs are referred to as varied.

Variables for which no derivatives are computed are referred to as passive.

Variables which active outputs depend on are referred to as useful.

Active variables are both varied and useful.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 26

Tangents by AD
Tangent DAG

Define

v(1) ≡ dv

ds

for v ∈ {x,y} and some auxiliary s ∈ IR assuming that F (x(s)) is continuously
differentiable over its domain.

By the chain rule

y(1) =
dy

ds
=

dy

dx
· dx
ds

= ∇F (x) · x(1) .

Application of the chain rule to the tangent DAG yields
y(1) ∈ IRm as a function of x ∈ IRn and x(1) ∈ IRn.
(Note: forward edge back-elimination)

s

x

y[F]

x(1)

∇F

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 27

Tangents by AD (Forward Mode)
Tangent SAC

Similar reasoning applied to the SAC yields . . .

i = 0, . . . , n− 1 :

(
vi

v
(1)
i

)
:=

(
xi

x
(1)
i

)
“seed”

i = n, . . . , q − 1 :

(
vi

v
(1)
i

)
:=

(
ϕi(vk)k≺i∑

j≺i
dϕi(vk)k≺i

dvj
· v(1)j

)
“propagate”

i = 0, . . . ,m− 1 :

(
yi

y
(1)
i

)
:=

(
vn+p+i

v
(1)
n+p+i

)
“harvest”

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 28

Tangents by AD (Forward Mode)
Code Generation Rules

1. duplicate active data segment

2. augment assignments with their tangents

3. leave flow of control unchanged

4. replace subprogram calls with their calls to their tangent versions

1 ...

2 for (int i=0;i<n;i++) {

3 xt+=dt*sin(x*t)*pt[i]

4 +dt*p[i]*t*cos(x*t)*xt

5 +cos(x*t)*sqrt(dt)*dW[j][i]*pt[i]

6 -p[i]*t*sin(x*t)*sqrt(dt)*dW[j][i]*xt;

7 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

8 t+=dt;

9 }

10 ...

→ SDE

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 29

Tangents by Overloading
Forward Edge Back-Elimination on Tangent DAG

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0] [x

(1)
1]

0 [x1] 1 [x0]

2 [cos(v2)]

3 [1/x1]

5 [x0]

4 [v4]

6 [c]

7 [−v4/x1]

Tangent DAG

We consider(
y0
y1

)
=

(
x0 ∗ sin(x0 ∗ x1)/x1

sin(x0 ∗ x1)/x1 ∗ c

)
implemented as

t := sin(x0 ∗ x1)/x1

y0 := x0 ∗ t; y1 := t ∗ c

yielding SAC

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4; y1 := v4 ∗ c

for some passive value c, i.e, no deriva-
tives of or with respect to required; x,y,
and t are active.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 30

Tangents by Overloading
Seed

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0] [x

(1)
1]

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

x0 :=?
x1 :=?

x
(1)
0 :=?

x
(1)
1 :=?

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 31

Tangents by Overloading
Propagate (Local Directional Derivatives)

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0] [x

(1)
1]

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 32

Tangents by Overloading
Propagate

s

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0] [x

(1)
1]

[v
(1)
2]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 33

Tangents by Overloading
Propagate

s

0: x0 1: x1

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0] [x

(1)
1]

[v
(1)
3]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1

v
(1)
4 := (v

(1)
3 − v4 ∗ x(1)

1)/x1

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 34

Tangents by Overloading
Propagate

s

0: x0

4: /

5: y0(∗) 6: y1(∗c)

[x
(1)
0]

[v
(1)
4]

[x0]

[v4]

[c]

v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1

v
(1)
4 := (v

(1)
3 − v4 ∗ x(1)

1)/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)

0 + x0 ∗ v(1)4

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 35

Tangents by Overloading
Propagate

s

4: /

5: y0(∗) 6: y1(∗c)

[y
(1)
0]

[v
(1)
4]

[c] v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1

v
(1)
4 := (v

(1)
3 − v4 ∗ x(1)

1)/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)

0 + x0 ∗ v(1)4

y1 := v4 ∗ c
y
(1)
1 := c ∗ v(1)4

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 36

Tangents by Overloading
Harvest

s

5: y0(∗) 6: y1(∗c)

[y
(1)
0] [y

(1)
1]

v2 := x0 ∗ x1

v
(1)
2 := x1 ∗ x(1)

0 + x0 ∗ x(1)
1

v3 := sin(v2)

v
(1)
3 := cos(v2) ∗ v(1)2

v4 := v3/x1

v
(1)
4 := (v

(1)
3 − v4 ∗ x(1)

1)/x1

y0 := x0 ∗ v4
y
(1)
0 := v4 ∗ x(1)

0 + x0 ∗ v(1)4

y1 := v4 ∗ c
y
(1)
1 := c ∗ v(1)4

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 37

Tangents by dco/c++
Scalar Tangents (dco::gt1s<double>)

1 #include "dco.hpp"

2 typedef dco::gt1s<double>::type DCO_T; // tangent type

3

4 vector<double> driver(double& xv, vector<double>& pv,

5 const vector<vector<double>>& dW) {

6 int n=dW[0].size(); vector<double> g(n+1,0);

7 DCO_T x0=xv; vector<DCO_T> p(n); dco::value(p)=pv; DCO_T x=x0;

8 dco::derivative(x)=1; // seed

9 euler_maruyama(x,p,dW); // propagate

10 g[0]=dco::derivative(x); // harvest

11 for (int i=0;i<n;i++) {

12 x=x0; // reset

13 dco::derivative(p[i])=1; // seed

14 euler_maruyama(x,p,dW); // propagate

15 g[i+1]=dco::derivative(x); // harvest

16 dco::derivative(p[i])=0; // reset

17 }

18 return g;

19 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 38

First-Order AD

Adjoints

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 39

Adjoint Code
Computer Scientist’s View (Simplified)

A first-order adjoint code F(1) : IRn × IRn × IRm → IRm × IRn,(
y

x(1)

)
:= F(1)(x,x(1),y(1)),

augments the computation of the function with the computation of a shifted
product of the transposed Jacobian with a vector:

y := F (x)

x(1) := x(1) +∇F (x)T · y(1)

y(1) := 0

... harvesting of the whole Jacobian row-wise by seeding input directions
y(1) ∈ IRm with the Cartesian basis vectors in IRm and for x(1) = 0 on input.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 40

Adjoint Code
Context-Free vs. Context-Sensitive

I context-sensitive adjoint

x(1) := x(1) +∇F (x)T · y(1)

y(1) := 0

if
I subsequent active use of x
I previous active use of y

in primal

I context-free adjoint
x(1) := ∇F (x)T · y(1)

if
I no subsequent active use of x
I no previous active use of y

in primal

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 41

Adjoints by AD
Adjoint DAG

Define

v(1) ≡
dt

dv

T

for v ∈ {x,y} and some auxiliary t ∈ IR assuming that t(F (x)) is continuously
differentiable over its domain.

By the chain rule

dt

dx

T

=
dF

dx

T

· dt
dy

T

= ∇F (x)T · y(1) .

Application of the chain rule to the adjoint DAG yields
x(1) ∈ IRn as a function of x ∈ IRn and y(1) ∈ IRm.
(Note: reverse vertex elimination)

x

y[F]

t

dF
dx

y(1)

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 42

Adjoints by AD (Reverse Mode)
Adjoint SAC: Augmented Primal / Forward Section

Similar reasoning applied to the SAC yields . . .

i = 0, . . . , n− 1 : vi := xi

“record” independent variables for harvesting

i = n, . . . , q − 1 : vi := ϕi(vk)k≺i

“record” intermediate variables and dj,i :=
dϕi(vk)k≺i

dvj
for j ≺ i

i = 0, . . . ,m− 1 : yi := vn+p+i

“record” dependent variables for seeding

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 43

Adjoints by AD (Reverse Mode)
Adjoint SAC: Adjoint / Reverse Section

i = 0, . . . ,m− 1 : vn+p+i(1) := yi(1) “seed”

i = q − 1, . . . , n : vi(1) :=
∑
j:i≺j

dj,i · vj(1) “propagate”

i = 0, . . . , n− 1 : xi(1) := vi(1) “harvest”

→ x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 44

Adjoint Code Generation Rules

1. augmented primal section

1.1 duplicate active data segment
1.2 enable recovery of lost required primal values (e.g, x=sin(x);)
1.3 enable reversal of primal flow of control (e.g, count loops and enumerate

branches)
1.4 enable recovery of primal results

2. adjoint section

2.1 recovery of lost required primal values
2.2 reverse primal flow of control
2.3 increment adjoints (e.g, y=sin(x); ... z=cos(x);)
2.4 reset adjoints of overwritten primals to zero after use (e.g,

z=cos(y); ... y=sin(x);)
2.5 recover primal results

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 45

Adjoint Code Generation Rules

1 // augmented primal

2 ...

3 for (int i=0;i<n;i++) {

4 tbr_T.push(x);

5 x+=dt*p[i]*sin(x*t)+p[i]*cos(x*t)*sqrt(dt)*dW[j][i];

6 tbr_double.push(t);

7 t+=dt;

8 }

9 ...

10 // adjoint

11 ...

12 for (int i=n-1;i>=0;i--) {

13 t=tbr_double.top(); tbr_double.pop();

14 x=tbr_T.top(); tbr_T.pop();

15 pa[i]+=(dt*sin(x*t)+cos(x*t)*sqrt(dt)*dW[j][i])*xa;

16 xa=(1+dt*p[i]*t*cos(x*t)-p[i]*t*sin(x*t)*sqrt(dt)*dW[j][i])*xa;

17 }

18 ...

→ SDE

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 46

Adjoints by Overloading
Reverse Vertex Elimination on Adjoint DAG (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

y0(1) y1(1)

Adjoint DAG

We consider(
y0
y1

)
=

(
x0 ∗ sin(x0 ∗ x1)/x1

sin(x0 ∗ x1)/x1 ∗ c

)
implemented as

t := sin(x0 ∗ x1)/x1

y0 := x0 ∗ t
y1 := t ∗ c

yielding SAC

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c

for some passive value c.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 47

Adjoints by Overloading
Register (Independent Inputs with Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

x0 :=?
x1 :=?

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 48

Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 49

Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v3 := sin(v2)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 50

Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 51

Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 52

Adjoints by Overloading
Record (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 53

Adjoints by Overloading
Seed

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

[y0(1)] [y1(1)]
v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
y0(1) :=?
y1(1) :=?
x0(1) :=?
x1(1) :=?
v2(1) := 0
v3(1) := 0
v4(1) := 0

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 54

Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗) 6: y1(∗c)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[c]

[−v4/x1]

[y0(1)] [y1(1)]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)

Context-sensitivity:

v4(1)+ = c ∗ y1(1)
⇔

v4(1) := v4(1) + c ∗ y1(1) .

Note: Need to store DAG yields infeasible PMR in most application scenarios.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 55

Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

5: y0(∗)

t

[x1] [x0]

[cos(v2)]

[1/x1]

[x0]

[v4]

[−v4/x1]

[y0(1)]

[∂y1
v4(1)] v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 56

Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

4: /

t

[x1] [x0]

[cos(v2)]

[1/x1]

[−v4/x1]

[∂y0
x0(1)]

[v4(1)]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1

v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 57

Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

3: sin

t

[x1] [x0]

[cos(v2)]

[∂y0
x0(1)] [∂v4x1(1)]

[v3(1)]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1

v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 58

Adjoints by Overloading
Interpret (Tape)

0: x0 1: x1

2: ∗

t

[x1] [x0]

[∂y0
x0(1)] [∂v4x1(1)]

[v2(1)]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1

v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)
x0(1)+ = x1 ∗ v2(1)
x1(1)+ = x0 ∗ v2(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 59

Adjoints by Overloading
Harvest

0: x0 1: x1

t

[x0(1)] [x1(1)]

v2 := x0 ∗ x1

v3 := sin(v2)
v4 := v3/x1

y0 := x0 ∗ v4
y1 := v4 ∗ c
v4(1)+ = c ∗ y1(1)
v4(1)+ = x0 ∗ y0(1)
x0(1)+ = v4 ∗ y0(1)
u := 1/x1

v3(1)+ = u ∗ v4(1)
x1(1)− = v4 ∗ u ∗ v4(1)
v2(1)+ = cos(x2) ∗ v3(1)
x0(1)+ = x1 ∗ v2(1)
x1(1)+ = x0 ∗ v2(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 60

Adjoints by dco/c++
Scalar Adjoints (dco::ga1s<double>)

1 #include "dco.hpp"

2 typedef dco::ga1s<double> DCO_A_MODE; // adjoint mode

3 typedef DCO_A_MODE::type DCO_A; // adjoint type

4 typedef DCO_A_MODE::tape_t DCO_A_TAPE; // tape type

5

6 vector<double> driver(double& xv, vector<double>& pv,

7 const vector<vector<double>>& dW) {

8 int n=dW[0].size(); vector<double> g(n+1,0);

9 DCO_A x0=xv; vector<DCO_A> p(n); dco::value(p)=pv;

10 DCO_A_MODE::global_tape=DCO_A_TAPE::create(); // create tape

11 DCO_A_MODE::global_tape->register_variable(x0); // record ...

12 DCO_A_MODE::global_tape->register_variable(p); // ... active inputs

13 DCO_A x=x0; // lock overwritten active input

14 euler_maruyama(x,p,dW); // record intermediates

15 DCO_A_MODE::global_tape->register_output_variable(x); // record ...

16 dco::derivative(x)=1; // ... and seed active output

17 DCO_A_MODE::global_tape->interpret_adjoint(); // propagate adjoints

18 g[0]=dco::derivative(x0); // harvest from locked active input

19 for (int i=0;i<n;i++) g[i+1]=dco::derivative(p[i]); // harvest

20 DCO_A_TAPE::remove(DCO_A_MODE::global_tape); // remove tape

21 return g;

22 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 61

Hands On

For given PDE and/or LIBOR codes ...

I ... write tangent code + driver

I ... use dco/c++ to generate tangent code; write driver

I ... write adjoint code + driver

I ... use dco/c++ to generate adjoint code; write driver

I ... cross-validate, race

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 62

Improvements
“Low Hanging Fruits”

I vector modes

I pathwise adjoints

I preaccumulation

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 63

Discussion

I higher-level elementals

I detection and exploitation of sparsity

I vector modes

I mixed precision

I nested tangents / adjoints / finite differences

I smoothing

I scripting and syntax-directed adjoints by interpretation

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 64

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 65

Second-Order AD
Summary of Results

W.l.o.g, let y = F (x), F : IRn → IR :

1. 2nd-order tangent AD: y(1,2) = x(1)T · ∇2F · x(2) ⇒ ∇2F at O(n2) · POC

2. 2nd-order adjoint AD: x
(2)
(1) = y(1) · ∇F 2 · x(2) ⇒ ∇2F at O(n) · POC and

∇2F · x(2) at O(1) · POC

3. three mathematically equivalent combinations of dco/c++ types for
second-order adjoint

4. tensor projections for multivariate vector functions

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 66

Second Derivatives
Multivariate Scalar Functions

Initially we consider multivariate scalar functions
y = F (x) : DF ⊆ IRn → IF ⊆ IR in order to simplify the notation.

We assume F to be twice continuously differentiable over its domain DF

implying the existence of the Hessian

∇2F (x) ≡ d2F

dx2
(x).

For multivariate vector functions the Hessian is a three-tensor complicating the
notation slightly due to the need for tensor arithmetic; see later.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 67

Second-Order Finite Differences
A second-order central finite difference quotient

d2f

dxidxj
(x0) ≈

[
f(x0 + (ej + ei) · h)− f(x0 + (ej − ei) · h)

−f(x0 + (ei − ej) · h) + f(x0 − (ej + ei) · h)
]
/(4 · h2)

yields an approximation of the second directional derivative

y(1,2) = x(1)T · ∇2f(x) · x(2) (w.l.o.g. m = 1)

as

d2f

dxidxj
(x0) ≈

df
dxi

(x0 + ej · h)− df
dxi

(x0 − ej · h)

2 · h

=

[
f(x0 + ej · h + ei · h)− f(x0 + ej · h− ei · h)

2 · h

−f(x0 − ej · h + ei · h)− f(x0 − ej · h− ei · h)

2 · h

]
/(2 · h).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 68

Second-Order AD

Tangents

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 69

Tangents of Tangents
Computer Scientist’s View (Simplified)

A second derivative code F (1,2) : IRn × IRn × IRn × IRn → IR× IR× IR× IR,
generated in Tangent-of-Tangent (TT) mode computes

y
y(2)

y(1)

y(1,2)

 = F (1,2)(x,x(2),x(1),x(1,2)),

as follows: 
y

y(2)

y(1)

y(1,2)

 :=


F (x)

∇F (x) · x(2)

∇F (x) · x(1)

x(1)T · ∇2F (x) · x(2) +∇F (x) · x(1,2)

 .

Note: In context of chain rule: y(1) and y(2) required and non-vanishing x(1,2)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 70

Tangents of Tangents
Derivation

Directional differentiation in tangent mode of the first-order tangent model(
y

y(1)

)
=

(
F (x)

dF (x)
dx · x(1)

)

in direction (x(2) x(1,2))T yields

(
y(2)

y(1,2)

)
≡

d

(
y

y(1)

)
d(x x(1))

·

(
x(2)

x(1,2)

)
=

 dy
dx · x

(2) +

=0︷ ︸︸ ︷
dy

dx(1)
· x(1,2)

dy(1)

dx · x
(2) + dy(1)

dx(1) · x(1,2)


[
y(1)=x(1)T · dF (x)

dx

T
;

d2F (x)

dx2

T

=
d2F (x)

dx2

]
=

 dF (x)
dx · x(2)

x(1)T · d
2F (x)
dx2 · x(2) + dF (x)

dx · x(1,2)



,

Naumann, Risk AAD Masterclass, 21-22 March 2018 71

Tangents of Tangents
Accumulation of Hessian

=

x(1)T · ∇2F (x) · x(2)

... accumulation of the whole Hessian element-wise by seeding input directions
x(1) ∈ IRn and x(2) ∈ IRn independently with the Cartesian basis vectors in IRn

for x(1,2) = 0; harvesting from y(1,2).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 72

Tangents of Tangents
... on Tangent-Augmented Tangent DAG

0: s

1: x

4: ∇F

2: x(1)

3: y[F] 5: y(1)[·]

x(2) x(1,2)

∇F

∇2F

x(1)

∇F

y(2) ≡ dy

ds

=
dF (x)

dx
· x(2)

y(1,2) ≡ dy(1)

ds

=
dF (x)

dx
· x(1,2) + x(1)T · d

2F (x)

dx2
· x(2)

See also AD of Inner Product.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 73

Tangents of Tangents
Code Generation Rules

1. Apply tangent code generation rules to first-order tangent code

2. Write appropriate driver

3. Parallelize / vectorize accumulation of the Hessian (optional)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 74

Tangents of Tangents by dco/c++
Cheat Sheet


y

y(2)

y(1)

y(1,2)

 :=


F (x)

∇F (x) · x(2)

∇F (x) · x(1)

x(1)T · ∇2F (x) · x(2) +∇F (x) · x(1,2)


v

v

v v(2)

v(1)

v(1) v(1,2)

value

value derivative

derivative

value derivative

1 dco::value(dco::value(v))==dco::passive_value(v)

2 dco::derivative(dco::value(v))

3 dco::value(dco::derivative(v)

4 dco::derivative(dco::derivative(v)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 75

Tangents of Tangents by dco/c++
Driver: y(1,2) := x(1)T · ∇2F (x) · x(2) +∇F (x) · x(1,2)

1 #include "dco.hpp"

2 typedef dco::gt1s<double>::type DCO_T; // tangent type

3 typedef dco::gt1s<DCO_T>::type DCO_TT; // tangent-of-tangent type

4

5 vector<vector<double>> driver(double& xv, const vector<double> &pv,

6 const vector<vector<double>>& dW) {

7 int n=pv.size();

8 vector<DCO_TT> p(n); dco::passive_value(p)=pv; // zero tangents

9 vector<vector<double>> ddxdpp(n,vector<double>(n,0));
10 for (int i=0;i<n;i++) {

11 dco::derivative(dco::value(p[i]))=1; // seed

12 for (int j=0;j<=i;j++) {

13 dco::value(dco::derivative(p[j]))=1; // seed

14 DCO_TT x=xv;

15 euler_maruyama(x,p,dW); // overloaded primal

16 ddxdpp[i][j]=dco::derivative(dco::derivative(x)); // harvest

17 dco::value(dco::derivative(p[j]))=0; // reset

18 }

19 dco::derivative(dco::value(p[i]))=0; // reset

20 }

21 return ddxdpp;

22 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 76

Second-Order AD

Adjoints

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 77

Tangents of Adjoints
Computer Scientist’s View (Simplified)

A second derivative code

F
(2)
(1)

: IRn × IRn × IR× IR→ IR× IR× IRn × IRn,

generated in Tangent-of-Adjoint (TA) mode computes
y

y(2)

x(1)

x
(2)
(1)

 = F
(2)
(1) (x,x(2), y(1), y

(2)
(1)),

as follows: 
y

y(2)

x(1)

x
(2)
(1)

 :=


F (x)

∇F (x) · x(2)

∇F (x)T · y(1)
y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)(1)

 .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 78

Tangents of Adjoints
Derivation

Directional differentiation in tangent mode of the first-order adjoint model(
y

x(1)

)
=

(
F (x)

dF (x)
dx

T
· y(1)

)

in direction (x(2) y
(2)
(1))

T yields

(
y(2)

x
(2)
(1)

)
≡

d

(
y

x(1)

)
d(x y(1))

·

(
x(2)

y
(2)
(1)

)
=

 dy
dx · x

(2) +

=0︷ ︸︸ ︷
dy

dy(1)
· y(2)(1)

dx(1)

dx · x
(2) +

dx(1)

dy(1)
· y(2)(1)


[
x(1)=y(1)·

dF (x)
dx

T
;

d2F (x)

dx2

T

=
d2F (x)

dx2

]
=

 dF (x)
dx · x(2)

y(1) · d
2F (x)
dx2 · x(2) + dF (x)

dx

T
· y(2)(1)


,

Naumann, Risk AAD Masterclass, 21-22 March 2018 79

Tangents of Adjoints
Accumulation of Hessian

=

y(1) · ∇2F (x) · x(2)

... accumulation of the whole Hessian column-wise by seeding input directions

x(2) ∈ IRn with the Cartesian basis vectors in IRn for y(1) = 1 and y
(2)
(1) = 0;

harvesting from x
(2)
(1).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 80

Tangents of Adjoints
... on Tangent-Augmented Adjoint DAG

s

0: x

5: ∇FT

6: x(1)[·]

1: y(1)

4: y[F]

x(2) y
(2)
(1)

∇F

∇2F

y(1)

∇FT
y(2) ≡ dy

ds

=
dF (x)

dx
· x(2)

x
(2)

(1) ≡
dx(1)

ds

= y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)

(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 81

Tangents of Adjoints
Code Generation Rules

1. Apply tangent code generation rules to first-order adjoint code

2. Write appropriate driver

3. Parallelize / vectorize accumulation of the Hessian (optional)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 82

Tangents of Adjoints by dco/c++
Cheat Sheet


y

y(2)

x(1)

x
(2)
(1)

 :=


F (x)

∇F (x) · x(2)

∇F (x)T · y(1)
y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)

(1)



v

v

v v(2)

v(1)

v(1) v
(2)
(1)

value

value derivative

derivative

value derivative

1 dco::value(dco::value(v))==dco::passive_value(v)

2 dco::derivative(dco::value(v))

3 dco::value(dco::derivative(v)

4 dco::derivative(dco::derivative(v)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 83

Tangents of Adjoints by dco/c++
Driver: x

(2)

(1)
:= y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)

(1) I

1 #include "dco.hpp"

2 typedef dco::gt1s<double>::type DCO_T; // tangent type

3 typedef dco::ga1s<DCO_T> DCO_TA_MODE; // tangent of adjoint mode

4 typedef DCO_TA_MODE::type DCO_TA; // tangent of adjoint type

5 typedef DCO_TA_MODE::tape_t DCO_TA_TAPE; // tape

6 typedef DCO_TA_TAPE::position_t DCO_TA_TAPE_POSITION; // tape position

7

8 vector<vector<double>> driver(double& xv, const vector<double> &pv,

9 const vector<vector<double>>& dW) {

10 int n=pv.size();

11 vector<DCO_TA> p(n); dco::passive_value(p)=pv;

12 vector<vector<double>> ddxdpp(n,vector<double>(n,0));
13 DCO_TA_MODE::global_tape=DCO_TA_TAPE::create(); // create tape

14 DCO_TA_MODE::global_tape->register_variable(p); // register active input

15 DCO_TA_TAPE_POSITION tpos=DCO_TA_MODE::global_tape->get_position(); // mark

16 for (int i=0;i<n;i++) {

17 dco::derivative(dco::value(p[i]))=1; // seed tangent

18 DCO_TA x=xv;

19 euler_maruyama(x,p,dW); // overloaded augmented primal

20 DCO_TA_MODE::global_tape->register_output_variable(x); // register ...

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 84

Tangents of Adjoints by dco/c++
Driver: x

(2)

(1)
:= y(1) · ∇2F (x) · x(2) +∇F (x)T · y(2)

(1) II

21 dco::value(dco::derivative(x))=1; // and seed adjoint output

22 DCO_TA_MODE::global_tape->

23 interpret_adjoint_and_reset_to(tpos); // propagate

24 for (int j=0;j<=i;j++)

25 ddxdpp[i][j]=dco::derivative(dco::derivative(p[j])); // harvest

26 for (int j=0;j<n;j++) {

27 dco::derivative(dco::derivative(p[j]))=0; // reset

28 dco::value(dco::derivative(p[j]))=0; // reset

29 }

30 dco::derivative(dco::value(p[i]))=0; // reset

31 }

32 DCO_TA_TAPE::remove(DCO_TA_MODE::global_tape); // remove tape

33 return ddxdpp;

34 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 85

Adjoints of Tangents
Computer Scientist’s View (Simplified)

A second derivative code

F
(1)
(2)

: IRn × IRn × IR× IR→ IR× IR× IRn × IRn,

generated in Adjoint-of-Tangent (AT) mode computes
y

y(1)

x(2)

x
(1)
(2)

 = F
(1)
(2) (x,x(1), y(2), y

(1)
(2)),

as follows: 
y

y(1)

x(2)

x
(1)
(2)

 :=


F (x)

∇F (x) · x(1)

∇F (x)T · y(1)(2)

y
(1)
(2) · ∇

2F (x) · x(1) +∇F (x)T · y(2)


,

Naumann, Risk AAD Masterclass, 21-22 March 2018 86

Adjoints of Tangents
Derivation

Directional differentiation in adjoint mode of the first-order tangent model(
y

y(1)

)
=

(
F (x)

dF (x)
dx · x(1)

)

in direction (y(2) y
(1)
(2))

T yields

(
x(2)

x
(1)
(2)

)
≡

d

(
y

y(1)

)
d(x x(1))

T

·

(
y(2)
y
(1)
(2)

)
=


dy
dx

T
· y(2) + dy(1)

dx

T

· y(1)(2)

dy

dx(1)

T

· y(2)︸ ︷︷ ︸
=0

+ dy(1)

dx(1)

T

· y(1)(2)


[

dy(1)

dx =x(1)T · d
2F (x)

dx2 ;
d2F (x)

dx2

T

=
d2F (x)

dx2

]
=

dF (x)
dx

T
· y(2) + y

(1)
(2) ·

d2F (x)
dx2 · x(1)

dF (x)
dx

T
· y(1)(2)


,

Naumann, Risk AAD Masterclass, 21-22 March 2018 87

Adjoints of Tangents
... on Adjoint-Augmented Tangent DAG

t

0: x

3: ∇F

2: x(1)

1: y[F] 4: y(1)[·]

y(2) y
(1)
(2)

∇F

∇2F

x(1)

∇F

x
(1)
(2)
≡

dt

dx(1)

T

= ∇F (x))T · y(1)
(2)

x(2) ≡
dt

dx

T

= ∇F (x)T · y(2) + y
(1)
(2)
· ∇2F (x) · x(1)

See also Eqn. (117).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 88

Adjoints of Tangents
Accumulation of Hessian (Complexity)

=

y
(2)
(1) · ∇

2F (x) · x(1)

... harvesting of the whole Hessian column-wise by seeding input directions

x(1) ∈ IRn with the Cartesian basis vectors in IRn for y
(2)
(1) = 1, x(2) = 0, and

y
(1)
(2) = 0; harvesting from x(2).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 89

Adjoints of Adjoints
Computer Scientist’s View (Simplified)

A second derivative code

F(1,2) : IRn × IRn × IR× IR→ IR× IRn × IRn × IR,

generated in Adjoint-of-Adjoint (AA) mode computes
y

x(1)

x(2)

y(1,2)

 = F(1,2)(x,x
(1,2), y(1), y(1,2)),

as follows: 
y

x(1)

x(2)

y(1,2)

 :=


F (x)

∇F (x)T · y(1)
y(1) · ∇2F (x) · x(1,2) +∇F (x)T · y(2)

∇F (x) · x(1,2)


,

Naumann, Risk AAD Masterclass, 21-22 March 2018 90

Adjoints of Adjoints
Derivation

Directional differentiation in adjoint mode of the first-order adjoint model(
y

x(1)

)
=

(
F (x)

dF (x)
dx

T
· y(1)

)

in direction (y(2) x(1,2))
T yields

(
x(2)

y(1,2)

)
≡

d

(
y

x(1)

)
d(x y(1))

T

·
(

y(2)
x(1,2)

)
=


dy
dx

T
· y(2) +

dx(1)

dx

T
· x(1,2)

dy

dy(1)

T

· y(2)︸ ︷︷ ︸
=0

+
dx(1)

dy(1)

T
· x(1,2)


[x(1)=y(1)·∇F (x)T]

=

dF (x)
dx

T
· y(2) + y(1) · d

2F (x)
dx2 · x(1,2)

dF (x)
dx · x(1,2)



,

Naumann, Risk AAD Masterclass, 21-22 March 2018 91

Adjoints of Adjoints
... on Adjoint-Augmented Adjoint DAG

t

0: x

3: ∇FT

4: x(1)[·]

2: y(1)

1: y[F]

x(1,2)y(2)

∇F

∇2F

y(1)

∇FT

x(2) ≡
dt

dx

T

= ∇F (x)T · y(2) + y(1) · ∇2F (x) · x(1,2)

y(1,2) ≡
dt

dy(1)

T

= ∇F (x)T · x(1,2)

See also Eqn. (117).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 92

Adjoints of Adjoints
Accumulation of Hessian (Complexity)

=

y(1) · ∇2F (x) · x(1,2)

... harvesting of the whole Hessian row-wise by seeding input directions
x(1,2) ∈ IRn with the Cartesian basis vectors in IRn for y(1) = 1, x(2) = 0, and
y(2) = 0; harvesting from x(2) = 0.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 93

Second Derivatives
Multivariate Vector Functions

We consider multivariate vector functions

y = F (x) : DF ⊆ IRn → IF ⊆ IRm.

We assume F to be twice continuously differentiable over its domain DF

implying the existence of the Hessian

∇2F (x) ≡ d2F

dx2
(x).

The Hessian is a three-tensor, that is

∇2F (x) ∈ IRm×n×n.

The notation needs to be extended to accommodate projections of Hessian
tensors.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 94

Jacobian Projections
Recall ...

e.g. A ≡ ∇2F, F : IR6 → IR4

Tangent Projection Adjoint Projection

1

3

5

3 5

1

3

1

1

0

0

0

0

0

3 51

1

3

1 3

000 1

< A, v >≡ A · v < w,A >≡ AT · w = (wT ·A)T

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 95

Hessian Projections
(First-Order) Tangent Projection

1

3

5

1

3 1

3

5

531

1

3

5

1

3

A v <A,v>

1

[< A, v >]∗,j = [A]∗,∗,j · v

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 96

Hessian Projections
(First-Order) Adjoint Projection

1 53

1

3

5

31

Aw <w,A>

1

3

1 5

1

5

3

1

3

[< w,A >]∗,j = wT · [A]∗,∗,j

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 97

Hessian Projections
Second-Order Tangent Projection

A uv <A,v,u>

531

1

3
1

3

5

1

3

1

3

5

5
1

31

x

x

1

Note:

< A, v, u >=<< A, v >, u >=<< A, u >, v >=< A, u, v >

due to symmetry; see, e.g., [Nau12] for proof.
,

Naumann, Risk AAD Masterclass, 21-22 March 2018 98

Hessian Projections
Second-Order Adjoint Projection

1

3

5

vw A <w,A,v>

531

1

3

5

1

3

1

3

1

5

3

1 1

Note:

< w,A, v >=< w <,A, v >>=<< w,A >, v >=< v,< w,A >>=< v,w,A >

due to symmetry; see, e.g., [Nau12] for proof.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 99

Tangents of Tangents
... on Tangent-Augmented Tangent DAG

0: s

1: x

4: ∇F

2: x(1)

3: y[F] 5: y(1)[<,>]

x(2) x(1,2)

∇F

∇2F

x(1)

∇F

y(1,2) =
dy(1)

ds
=

d∇F · x(1)

ds

=
d < ∇F,x(1) >

ds

=<
d∇F
ds

,x(1) >

=<<
d∇F
dx

,
dx

ds
>,x(1) >

=<< ∇2F,x(2) >,x(1) >

for passive x(1) (x(1,2) = 0).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 100

Tangents of Adjoints
... on Tangent-Augmented Adjoint DAG

s

0: x

5: ∇F

6: x(1)[<,>]

1: y(1)

4: y[F]

x(2) y
(2)
(1)

∇F

∇2F

y(1)

∇F

x
(2)

(1) =
dx(1)

ds
=

d∇FT · y(1)

ds

=
d < y(1),∇F >

ds

=< y(1),
d∇F
ds

>

=< y(1), <
d∇F
dx

,
dx

ds
>>

=< y(1), < ∇2F,x(2) >>

for passive y(1) (y
(2)

(1)).

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 101

Adjoints of Tangents
... on Adjoint-Augmented Tangent DAG

t

0: x

3: ∇F

2: x(1)

1: y[F] 4: y(1)[<,>]

y(2) y
(1)
(2)

∇F

∇2F

x(1)

∇F

xT
(2) =

dt

dx
=<

dt

dy(1)
,
d∇F · x(1)

dx
>

=<
dt

dy(1)
,
d < ∇F,x(1) >

dx
>

=<
dt

dy(1)
, <

d∇F
dx

,x(1) >>

=< y
(1)

(2), < ∇
2F,x(1) >> .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 102

Adjoints of Adjoints
... on Adjoint-Augmented Adjoint DAG

t

0: x

3: ∇FT

4: x(1)[<,>]

2: y(1)

1: y[F]

x(1,2)y(2)

∇F

∇2F

y(1)

∇FT

xT
(2) =

dt

dx
=<

dt

dx(1)

,
d∇FT · y(1)

dx
>

=<
dt

dx(1)

,
d < y(1),∇F >

dx
>

=<
dt

dx(1)

, < y(1),
d∇F
dx

>

=< x(1,2), < y(1),∇2F > .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 103

Outlook: Higher Derivatives
e.g, Tangents of Tangents of Adjoints

y := F (x)

y(3) :=<
dF

dx
,x(3) >

y(2) :=<
dF

dx
,x(2) >

y(2,3) :=<
d2F

dx2
,x(2),x(3) > + <

dF

dx
,x(2,3) >

x(1) :=< y(1),
dF

dx
>

x
(3)

(1)
:=< y

(3)

(1),
dF

dx
> + < y(1),

d2F

dx2
,x(3) >

x
(2)

(1)
:=< y

(2)

(1),
dF

dx
> + < y(1),

d2F

dx2
,x(2) >

x
(2,3)

(1)
:=< y

(2,3)

(1) ,
dF

dx
> + < y

(2)

(1),
d2F

dx2
,x(3) > + < y(1,2),

d2F

dx2
,x(2) >

+ < y(1),
d3F

dx3
,x(2),x(3) > + < y(1),

d2F

dx2
,x(2,3) > .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 104

Hands On

For given PDE and/or LIBOR codes ...

I ... write second-order tangent code + driver

I ... use dco/c++ to generate second-order tangent code; write driver

I ... write second-order adjoint code + driver

I ... use dco/c++ to generate second-order adjoint code; write driver

I ... cross-validate, race

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 105

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 106

Recall ...

The adjoint of a program y = xq = F (x = x0) computes

X0(1) = X(1)

∈IRn×l

= ∇F (x)T · Y(1)

∈IRm×l

= ∇FT
1 · (. . . (∇FT

q ·Xq(1)) . . .)

assuming availability of adjoint elemental functions (adjoint elementals)

Xi−1(1) = ∇Fi(xi−1)T ·Xi(1)

for i = q, . . . , 1 (→ reversal of data flow).

The minimum requirement for adjoint AD (AAD) is the implementation of
adjoint versions of the intrinsic operations (+, ∗, . . .) and functions
(sin, exp, . . .) of the given programming language.

Their naive combination yields algorithmic adjoint programs, which may turn
out infeasible for various reasons. Hierarchies in granularity and mathematical
semantics must be exploited in “real world” AAD.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 107

Adjoint Elementals and Programs

An adjoint elemental Fi(1) comprises both data and instructions necessary for

evaluating Xi−1(1) = ∇Fi(xi−1)T ·Xi(1).

An adjoint program F(1) is a partially ordered sequence of evaluations of
adjoint elementals.

An appropriately augmented version of the given implementation of F (the

forward (augmented primal) section
→
F (1) of the adjoint program) is executed to

record data required for the evaluation of

Xi−1(1) = Fi(1)(xi−1, Xi(1)) ≡ ∇Fi(xi−1)T ·Xi(1) for i = q, . . . , 1

by the reverse (adjoint) section
←
F (1) of the adjoint program.

The tape of the adjoint program is a (partially ordered) concatenation of the
tapes of the adjoint elementals. Basic AAD records the entire tape
homogeneously based on algorithmic adjoint elementals followed by its use for
the propagation of adjoints.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 108

Beyond Black-Box Adjoint AD
Gaps in Tapes

Let Fk(1) not be implemented by basic AAD.

A gap is induced in the tape of the adjoint program

X(1) = X0(1)∇FT
1 · . . . ·

Xk−1(1)︷ ︸︸ ︷
∇FT

k (xk−1) · (∇FT
k+1 · . . . · (∇FT

q ·Xq(1)) . . .)︸ ︷︷ ︸
Xk(1)

to be filled by a custom version of Fk(1).

For example, checkpointing methods decrease the maximum tape size by storing
xk−1 in the forward section followed by the evaluation of the primal Fk and
postponing the generation of the tape for F(1)k

to the reverse section of F(1).

Further examples include the implementation of symbolic adjoint elementals,
preaccumulation and approximation of Jacobians of local black boxes by finite
differences.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 109

AD of Implicit Functions

Let F (x(p),p) = 0 with F : IRnx × IRnp → IRnx continuously differentiable
wrt. both x and p. Then from

dF

dp
=

∂F

∂p
+

dF

dx
· dx
dp

= 0

follows (Implicit Function Theorem)

dx

dp
= −dF

dx

−1
· ∂F
∂p

implying tangents

x(1) ≡ dx

dp
· p(1) = −dF

dx

−1
· ∂F
∂p
· p(1)︸ ︷︷ ︸

=:z(1)

and context-free adjoints

p(1) ≡
dx

dp

T

· x(1) = −∂F

∂p

T

· dF
dx

−T
· x(1)︸ ︷︷ ︸

=:z(1)

.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 110

Tangent Nonlinear Equations

x2 − p = 0

x∗ ≈ √p

(
2 · x · dx

dp
− 1

)
· p(1) = 2 · x ·

(
dx

dp
· p(1)

)
=x(1)

− p(1) = 0

=
p(1)

2·x ?

(x∗, x∗(1)) = S(p, p(1))

d
dp · p

(1)

S̃(x∗, p(1))

x∗(1)

S(p + ∆p)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 111

Tangent Nonlinear Equations by Hand
Algorithmic Tangent

1 template<typename T> // primal

2 void newton(T& x, const T& p, const T& eps) {

3 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

4 }

5

6 template<typename T>

7 void tangent_newton(T& xv, T& xt, const T& pv, const T& pt, const T& eps) {

8 while (abs(xv*xv-pv)>eps) {

9 xt+=pt/(2*xv)-(3./4.+pv/(4*xv*xv))*xt;

10 xv-=(xv*xv-pv)/(2*xv);

11 }

12 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 112

Tangent Nonlinear Equations by Hand
Symbolic Tangent

1 template<typename T> // primal

2 void newton(T& x, const T& p, const T& eps) {

3 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

4 }

5

6 template<typename T> // symbolic tangent

7 void tangent_newton(const T& xv, T& xt, const T& pt) {

8 xt=pt/(2*xv);

9 }

10

11 int main(int c, char* v[]) {

12 ...

13 newton(xv,pv,eps); // primal

14 tangent_newton(xv,xt,pt); // symbolic tangent

15 ...

16 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 113

Adjoint Nonlinear Equations

x2 − p = 0

x∗ ≈ √p

x(1) ·
(

2 · x · dx
dp
− 1

)
= 2 · x ·

(
x(1) ·

dx

dp

)
=p(1)

− x(1) = 0

=
x(1)

2·x ?

(x∗, G) =
→
S (p)

x(1) · d
dp

S̃(x∗, x(1))

←
S (G, x(1))

S(p + ∆p)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 114

Adjoint Nonlinear Equations by Hand
Algorithmic Adjoint

1 template<typename T>

2 void adjoint_newton(T& xv, T& xa, const T& pv, T& pa, const T& eps) {

3 stack<T> tbr_T;

4 int i=0;

5 while (abs(xv*xv-pv)>eps) {

6 tbr_T.push(xv);

7 xv-=(xv*xv-pv)/(2*xv);

8 i++;

9 }

10 double y=xv;

11 for (int j=0;j<i;j++) {

12 xv=tbr_T.top(); tbr_T.pop();

13 pa+=xa/(2*xv);

14 xa-=(3./4.+pv/(4*xv*xv))*xa;

15 }

16 xv=y;

17 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 115

Adjoint Nonlinear Equations by Hand
Symbolic Adjoint

1 template<typename T> // primal

2 void newton(T& x, const T& p, const T& eps) {

3 while (abs(x*x-p)>eps) x=x-(x*x-p)/(2*x);

4 }

5

6 template<typename T> // symbolic adjoint

7 void adjoint_newton(const T& xv, T& xa, T& pa) {

8 pa+=xa/(2*xv); xa=0;

9 }

10

11 int main(int c, char* v[]) {

12 ...

13 newton(xv,pv,eps); // primal

14 adjoint_newton(xv,xa,pa); // symbolic adjoint

15 ...

16 }

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 116

AD of Inner Product

Let y = aT · x.

Tangent

y(1) = a(1)T · x + aT · x(1)

Context-Sensitive Adjoint

a(1)+ = y(1) · x
x(1)+ = a · y(1)
y(1) = 0

Proof via algorithmic adjoint ...

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 117

AD of Matrix-Vector Product

Let y = A · x.

Tangent
y(1) = A(1) · x + A · x(1)

Context-Sensitive Adjoint

x(1)+ = AT · y(1)

A(1)+ = y(1) · xT

y(1) = 0

Proof via element-wise inner products ...

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 118

AD of Matrix-Matrix Product

Let Y = A ·X.

Tangent
Y (1) = A(1) ·X + A ·X(1)

Context-Sensitive Adjoint

X(1)+ = AT · Y(1)

A(1)+ = Y(1) ·XT

Y(1) = 0

Proof via (concurrent) column-wise matrix-vector products

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 119

Generalization

Let A ∈ IRm×n, X(1) ∈ IRn×q, and B ∈ IRq×p. Then Y (1) ∈ IRm×p and

Y (1) = A ·X(1) ·B ⇒ X(1) = AT · Y(1) ·BT

for Y(1) ∈ IRm×p and X(1) ∈ IRn×q.

Proof: From matrix-matrix product ...

Z(1) = A ·X(1) ⇔ X(1) = AT · Z(1)

Y (1) = Z(1) ·B ⇔ Z(1) = Y(1) ·BT

and substitution. �

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 120

AD of Linear Systems

Let Ax = b with invertable A ∈ IRn×n, b ∈ IRn and x = x(A,b) ∈ IRn.

Eqn. (118) yields tangents x(1) as solutions of the linear system

A · x(1) = b(1) −A(1) · x .

Context-free adjoints follow immediately from x(1) = A−1 ·b(1) −A−1 ·A(1) · x
as

b(1) = A−T · x(1)

A(1) = (−A−T · x(1) · xT =)− b(1) · xT .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 121

AD of Nonlinear Systems

Let F (x(p),p) = 0 with F : IRnx × IRnp → IRnx continuously differentiable
wrt. both x and p.

Tangents and adjoints are defined at the solution as

x(1) = −dF

dx

−1
· ∂F
∂p
· p(1)

i.e, as solution of linear system dF
dx · x

(1) = −∂F
∂p · p

(1) , and

p(1) = −∂F

∂p

T

· dF
dx

−T
· x(1) ,

i.e, as solution of linear system dF
dx

T · z(1) = −x(1) followed by evaluation of

the adjoint p(1) = ∂F
∂p

T · z(1) .

U.N., K. Leppkes, J. Lotz, M. Towara: Algorithmic differentiation of numerical methods:
Tangent and adjoint solvers for parameterized systems of nonlinear equations. ACM Trans.
Math. Soft., 2015.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 122

AD of Convex Optimizers
Unconstrained Case

Let df(x(p),p)
dx = 0 with df

dx
: IRnx × IRnp → IRnx continuously differentiable wrt.

both x and p.

Tangents and adjoints are defined at the solution as

x(1) = −d2f

dx2

−1

· ∂2f

∂x∂p
· p(1)

i.e, as solution of linear system d2f
dx2 · x(1) = − ∂f2

∂x∂p · p
(1) , and

p(1) = − ∂f2

∂x∂p

T

· df
2

dx2

−1

· x(1) ,

i.e, as solution of linear system d2f
dx2 · z(1) = −x(1) followed by evaluation of the

second-order adjoint p(1) = ∂2f
∂x∂p

T
· z(1) .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 123

Algorithmic Adjoint ODE
... over Symbolic Adjoint Nonlinear System I

Implicit Euler integration of the ODE

dx

dt
= G(x)

for x ∈ IRn and with given initial value x(0) = x0 yields

xi − xi−1

ti − ti−1
= G(xi)

and hence the solution of the nonlinear system

F (xi,xi−1) = xi − xi−1 − (ti − ti−1) ·G(xi) = 0

for i = 1, . . . ,m. To evaluate adjoints of the ODE’s final wrt. initial condtions
the symbolic adjoint nonlinear system

dF

dxi

T

· xi−1
(1) =

(
In − (ti − ti−1) · dG

dxi

T
)
· xi−1

(1) = xi
(1)

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 124

Algorithmic Adjoint ODE
... over Symbolic Adjoint Nonlinear System II

needs to be solved for i = m, . . . , 1 as

dF

dxi

T

· z(1) = −xi
(1)

is followed by evaluation of the adjoint

xi−1
(1) =

∂F

∂xi−1

T

· z(1) = −In · z(1)

implying

−In · xi−1
(1) = z(1)

dF

dxi

T

· (−In) · xi−1
(1) = −xi

(1)

−In ·
dF

dxi

T

· xi−1
(1) = −xi

(1)

dF

dxi

T

· xi−1
(1) = xi

(1) .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 125

Symbolic Adjoint ODE
... turns out to be the same ... I

Algorithmic Differentiation of the explicit Euler scheme

xi+1 := xi + (ti+1 − ti) ·G(xi), i = 0, . . . ,m− 1

for the primal ODE in adjoint mode yields

xi
(1) := xi+1

(1) + (ti+1 − ti) · dG
dx

T

(xi) · xi+1
(1)

for i = m− 1, . . . , 0 and hence

xi
(1) − xi+1

(1)

ti − ti+1
= −dG

dx

T

(xi) · xi+1
(1)

that is, for m→∞ (ti+1 → ti) the explicit Euler scheme for the adjoint ODE

dx(1)

dt
= −dG

dx

T

· x(1), xm
(1) = x(1)(T) .

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 126

Symbolic Adjoint ODE
... turns out to be the same ... II

Note that the primal xi are accessed in reverse order of their computation.
Implicit Euler integration yields

xi
(1) − xi+1

(1)

ti − ti+1
= −dG

dx

T

(xi) · xi
(1)

and hence xi
(1) as the solution of the linear system

xi
(1) + (ti − ti+1) · dG

dx

T

(xi) · xi
(1) =

(
I + (ti − ti+1) · dG

dx

T

(xi)

)
· xi

(1) =(
I − (ti+1 − ti) · dG

dx

T

(xi)

)
· xi

(1) = xi+1
(1)

for i = m− 1, . . . , 0. Note equivalence of symbolic adjoint ODE to its
algorithmic adjoint over symbolic adjoint nonlinear solver.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 127

Symbolic Adjoint ODE
... turns out to be the same ... III

Explicit Euler integration of the adjoint ODE yields

xi−1
(1) = xi

(1) − ((ti−1 − ti) · dG
dx

T

(xi) · xi
(1)

= xi
(1) + ((ti − ti−1) · dG

dx

T

(xi) · xi
(1)

for i = m− 1, . . . , 0.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 128

Hands-On

Implement symbolic tangent and adjoint versions of the given implict Euler
PDE code.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 129

Checkpointing
Motivation: Store-All

x0

x1

x2

x3

x4

p0

p1

p2

p3

dxi

dxi−1

dxi

dpi−1 (PMR,POC)

(5, 0)← register x0,p

(8, 1)← compute x1 and record

(11, 2)← compute x2 and record

(14, 3)← compute x3 and record

(17, 4)← compute x4 and record; return x4; set x4
(1)

(14, 4)← compute x3
(1), p

3
(1); release x4

(11, 4)← compute x2
(1), p

2
(1); release x3

(8, 4)← compute x1
(1), p

1
(1); release x2

(5, 4)← compute x0
(1), p

0
(1); release x1

(0, 4)← return x0
(1),p(1), release x0,p

Note: PMR ∼ |E|+ |V |, POC ∼ |V |

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 130

Checkpointing
Motivation: Store-All

^

0^
\

0
^

s
^
?

<
^

\

.
y

0
^ l

0^I ,

<
r=

> f
=

r
-
^

0r
^
"

T^
^-
0

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 131

Checkpointing
Motivation: Recompute-All

x0

x1

x2

x3

x4

p0

p1

p2

p3

dxi

dxi−1

dxi

dpi−1 (PMR,POC)

(6, 0)← register x0,p, store x0

(9, 4)← compute x3; compute x4 and record; return x4

(6, 4)← set x4
(1); compute x3

(1), p
3
(1); release x4

(9, 7)← restore x0; compute x2; compute x3 and record

(6, 7)← compute x2
(1), p

2
(1); release x3

(9, 9)← restore x0; compute x1; compute x2 and record

(6, 9)← compute x1
(1), p

1
(1); release x2

(8, 10)← restore and free x0; compute x1 and record

(5, 10)← compute x0
(1), p

0
(1); release x1

(0, 10)← return x0
(1),p(1); release x0,p

Note: Recording single steps

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 132

Checkpointing
Motivation: Recompute-All

3
-

0 t0
.

l3
?

Q
>

0t^
->[

C
5

J
l

c
^
>

^
1.1

-̂»
-I

v

*
<

3
>

J
^

0.-
^

¥
'

^-
^Tr
^

<
s
?

r-ff
^0

-^
 1

^
_

^
^
 («

")
(
^
 I «

^

^^

\
^

^
c
>

G
=

5

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 133

Checkpointing
Motivation: Trade-Off

x0

x1

x2

x3

x4

p0

p1

p2

p3

dxi

dxi−1

dxi

dpi−1

(PMR,POC)

(6, 0)← register x0,p; store x0

(6, 2)← compute x2

(12, 4)← compute x4 and record

(9, 4)← set x4
(1); compute x3

(1), p
3
(1); release x4

(6, 4)← compute x2
(1), p

2
(1); release x3

(11, 6)← restore and free x0; compute x2 and record

(8, 6)← compute x1
(1), p

1
(1); release x2

(5, 6)← compute x0
(1), p

0
(1); release x1

(0, 6)← return x0
(1),p(1); release x0,p

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 134

Checkpointing
Motivation: Trade-Off

0
-J

^
j^

r
-
o

1
.^

o
 A

-
+

j

s
'

l
0

^
^
-9

^
<

0^
^

l

t
-J

^-^
 I ^

s
>

r
^

c
^
>

c
j

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 135

Checkpointing Ensembles
Recall: Pathwise Adjoint SDE

-
r
#

^
^
 '1

^
^

A

^

'
^
r

-
J

^
•J

^

r-J
^
-
J

4
^

0L
J^

+
1

-c
-
^-p

l
,

Naumann, Risk AAD Masterclass, 21-22 March 2018 136

Checkpointing Evolutions
Live: Pathwise Checkpointed Adjoint SDE

0L
^[

'/

<̂
^

u
^

Cv^>
-(-(

c
^

^
/ l ^

n-i-

^

^

<

>-t-1
r^<

>

(

r
^
^

^

^
-^

i

-: 1
^

^

c
^
^(-J

-
<

<
0

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 137

Checkpointing
Call Tree Reversal

Example: Let PMR = 1110 ...

R=(0,0):

f f

hh

gg g

+100

+1000

+100

+10 +10

−1000

−100−100

−10 −10

R=(1,1):

f f

g

h

g g

h hh

1000 1000

100 100

+1

+1

−1

−1

+10 +10

+100 +100

+1000

−10 −10

−100 −100

−1000

PMR=1220, POC=0 PMR=1110, POC=2200

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 138

Checkpointing
Call Tree Reversal (Heuristics)

Smallest Memory Increase starts
from R = 1 and yields . . .
Largest Memory Decrease (LMD)
starts from R = 0 and yields . . .

R=(0,1):

f f

hhh

gg g

+1 −1

+10 +10

+100 +100

+1000 −1000

−100 −100

−10 −10

1000

PMR=1110, POC=1000

R=(1,0):

f f

h

g

h

g g

h

−1+1

+10 +10

+100 +100

−1000+1000

−100 −100

−10 −10

1000

100100

Largest Memory Increase (LMI) re-
mains at R = 1 as R = (1, 0) infea-
sible

PMR=1120, POC=1200

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 139

Hands On

Implement an equidistant checkpointing scheme for given algorithmic adjoint
PDE code.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 140

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 141

Further AAD

I AAD on GPUs / meta-adjoint programming

I Adjoint code design patterns

I NAG AD Library

I Further dco/c++
I file tape
I multiple (e.g, thread-local) tapes
I multiple (e.g, thread-local) adjoint vectors and (parallel) interpretation of

same tape
I minimum number of adjoint program variables
I just-in-time code generation and compilation / linking
I inner product invariance debugging

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 142

Outline

First-Order AD
Tangents
Adjoints
Hands On

Second-(and Higher-)Order AD
Tangents
Adjoints
Hands on

Beyond Black-Box AD
Implicit Functions
Checkpointing
Hands on

Further AAD

Conclusion

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 143

Conclusion

The quality of an adjoint AD solution / tool is defined by

I robustness wrt. language features of target code

I efficiency of adjoint propagation

I flexibility wrt. design scenarios

I sustainability wrt. dynamics in user requirements, personnel, hard- and
software

AD is fun ...

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 144

“Optimality”
I

I’m sittin’ in front of the computer screen.
Newton’s second iteration is what I’ve just seen.
It’s not quite the progress that I would expect
from a code such as mine – no doubt it must be perfect!
Just the facts are not supportive, and I wonder ...

My linear solver is state-of-the-art.
It does not get better wherever I start.
For differentiation is there anything else?
Perturbing the inputs – can’t imagine this fails.
I pick a small Epsilon, and I wonder ...

I wonder how, but I still give it a try.
The next change in step size is bound to fly.
’cause all I’d like to see is simply optimality.
Epsilon, in fact, appears to be rather small.
A factor of ten should improve it all.

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 145

“Optimality”
II

’cause all I’d like to see is nearly optimality.

A DAD ADADA DAD ADADA DADAD.

A few hours later my talk’s getting rude.
The sole thing descending seems to be my mood.
How can guessing the Hessian only take this much time?
N squared function runs appear to be the crime.
The facts support this thesis, and I wonder ...

Isolation due to KKT
Isolation – why not simply drop feasibility?

The guy next door’s been sayin’ again and again:
An adjoint Lagrangian might relieve my pain.
Though I don’t quite believe him, I surrender.

I wonder how but I still give it a try:

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 146

“Optimality”
III

Gradients and Hessians in the blink of an eye.
Still all I’d like to see is simply optimality.
Epsilon itself has finally disappeared.
Reverse mode AD works, no matter how weird,
and I’m about to see local optimality.

Yes, I wonder, I wonder ...

I wonder how but I still give it a try:
Gradient and Hessians in the blink of an eye.
Still all I’d like to see ...
I really need to see ...
now I can finally see my cherished optimality :-)

www.stce.rwth-aachen.de/research/the-art

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 147

Follow-up

naumann@stce.rwth-aachen.de

and

https://www.nag.co.uk/content/nag-and-algorithmic-differentiation

,

Naumann, Risk AAD Masterclass, 21-22 March 2018 148

	First-Order AD
	Tangents
	Adjoints
	Hands On

	Second-(and Higher-)Order AD
	Tangents
	Adjoints
	Hands on

	Beyond Black-Box AD
	Implicit Functions
	Checkpointing
	Hands on

	Further AAD
	Conclusion

