Algorithmic Differentiation
in More Depth

To delve a little more into AD, consider a computer implementation of a
function f with n inputs and one output, i.e. f: R®" — R. AD can be applied to
vector-valued functions as well, but to keep things simple we only consider
real valued functions below.

AD comes in two modes, forward and reverse.

Forward (tangent-linear) Mode AD

The forward (or tangent-linear) AD version of fis a function FO . R™ 4R
given by

of
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for inputs x, x(1) € R™ where the dot is regular dot product. To get the whole

gradient of f we let x(1) range over Cartesian basis vectors and call FO
repeatedly.

e The runtime of F is typically similar to the runtime of f
® Computing the whole gradient is roughly n times the cost of computing f

® Forward mode AD has roughly the same cost as finite differences, but
computes gradients to machine precision

Forward mode AD is typically used when n is small, say less than 30, alt'
the exact figure will depend on the function being differentiated. Above ti.
adjoint methods are used.
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Adjoint Mode AD (or reverse mode)

Intuition

To understand adjoint mode AD it helps to consider an input x € R” being
moved along by a sequence of function calls to an output y € R

fl f2 fm+1
X > X1 > Xo > e > Xm >

We want the gradient 0y/0x and by the Chain Rule this is just

0x; 0x5 0x3 3 0Xm Oy

0x 0x; 0xs ' 0Xm_1 0Xpm
Mathematically

Mathematically it doesn't matter which way we evaluate this. The usual way is

left to right
C(O0x1 0%\ Ox3\  Oxpy Oy
8){ 3x1 3x2 8Xm_1 3xm

and this is natural since it corresponds to the order of program execution: the

program first computes x1, then X5, and so on. However it involves matrix-
matrix multiplications followed by final matrix-vector product since in general
each Jacobian 9x;11/0x; is a matrix.

Suppose instead we started from the right

0xy [ 0%x2 8x3___ 0Xm Oy
ox \ 0x; \ 0%, 0Xm—1 OXm

Now everything is matrix-vector products which are much faster, however we

effectively need to run the program backwards:

® The data to compute 0y/0x,, is only available at the end of the
calculation -- it requires y and x,,, which requires x,, 1, which requires
Xm—2 and so on

® One way to solve this is to run the program forwards and store all
relevant intermediate values

0311
“oxi from the

stored values, and performing the matrix-vector products

® Then we step backwards, constructing the Jacobians
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This whole approach to computing gradients is called the adjoint mode of AD.

The Adjoint Model

The adjoint model of fis a function x(1) = F(1)(X,X(1),ya)) mapping R" xR" xR
to R" given by

x(1) = xq) + VF(x) -y

® Note that y(;) is a scalar. Hence setting y;) = 1 and x(;) = 0 and calling
the adjoint model F(l) once gives the full vector of partial derivatives of
f

® The Jacobians 8xi+1/3xi are not formed explicitly and sparsity is
exploited.

® |t can be proved that, in general, computing F(l) requires no more than
five times as many floating point operations as computing f.

® This implies that the adjoint can give the full gradient at a cost which is
a (small) multiple R of the cost of running f.

® However to implement the adjoint model we need to solve a dataflow
reversal problem which dominates by far the computational cost.

® Hence typical values of R are between 5 and 50, depending on the
specific code.

Adjoint Model and Memory Requirements

Performing adjoint calculations requires solving a data flow reversal problem:
the program essentially has to be run backwards. Many AD tools (including
dco ) approach this by running the program forwards and storing intermediate
calculations to memory in a datastructure called a tape. Even for relatively
simple codes the tape can be several GBs, and for production codes will
typically exceed the capacity of even large memory machines.

To solve this problem, dco has a flexible interface which allows users to easily
insert checkpoints at various points in their code. When the code is run
backwards the final checkpoint is restored and that section of computation
taped and played back, then the second-to-last checkpoint is restored and that
section of computation is taped and played back (with the previous playback's
results), and so on. In this way memory is traded for flops, with the result that
the size of the tape can be constrained almost arbitrarily.

This functionality is essential in getting adjoint models of production codr
run at all. For more information on checkpointing as well as other techniq
of reducing the memory footprint of adjoint codes, please contact us
(/content/nag-technical-support-service#contact).
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