
Algorithmic Differentiation
in More Depth

To delve a little more into AD, consider a computer implementation of a
function with inputs and one output, i.e. . AD can be applied to
vector-valued functions as well, but to keep things simple we only consider
real valued functions below.

AD comes in two modes, forward and reverse.

Forward (tangent-linear) Mode AD

The forward (or tangent-linear) AD version of is a function
given by

for inputs where the dot is regular dot product. To get the whole
gradient of we let range over Cartesian basis vectors and call
repeatedly.

• The runtime of is typically similar to the runtime of

• Computing the whole gradient is roughly times the cost of computing

• Forward mode AD has roughly the same cost as finite differences, but
computes gradients to machine precision

Forward mode AD is typically used when is small, say less than 30, although
the exact figure will depend on the function being differentiated. Above this,
adjoint methods are used.

f n f : → RR
n

f : → RF (1)
R

2n

= (x,) = ∇f(x) ⋅ = () ⋅y(1) F (1) x(1) x(1) ∂f

∂x
x(1)

x, ∈x(1)
R

n

f x(1) F (1)

F (1) f

n f

n

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

Adjoint Mode AD (or reverse mode)

Intuition

To understand adjoint mode AD it helps to consider an input being
moved along by a sequence of function calls to an output

We want the gradient and by the Chain Rule this is just

Mathematically

Mathematically it doesn't matter which way we evaluate this. The usual way is
left to right

and this is natural since it corresponds to the order of program execution: the
program first computes , then , and so on. However it involves matrix-
matrix multiplications followed by final matrix-vector product since in general
each Jacobian is a matrix.

Suppose instead we started from the right

Now everything is matrix-vector products which are much faster, however we
effectively need to run the program backwards:

• The data to compute is only available at the end of the
calculation -- it requires and , which requires , which requires

 and so on

• One way to solve this is to run the program forwards and store all
relevant intermediate values

• Then we step backwards, constructing the Jacobians from the
stored values, and performing the matrix-vector products

x ∈ R
n

y ∈ R

x ⟶⋯⟶ y⟶

f1
x1 ⟶

f2
x2 xm ⟶

fm+1

∂y/∂x

⋯
∂x1

∂x

∂x2

∂x1

∂x3

∂x2

∂xm

∂xm−1

∂y

∂xm

(⋯())⋯)∂x1

∂x

∂x2

∂x1

∂x3

∂x2

∂xm

∂xm−1

∂y

∂xm

x1 x2

∂ /∂xi+1 xi

((⋯()⋯)∂x1

∂x

∂x2

∂x1

∂x3

∂x2

∂xm

∂xm−1

∂y

∂xm

∂y/∂xm

y xm xm−1

xm−2

∂xi+1

∂xi

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

This whole approach to computing gradients is called the adjoint mode of AD.

The Adjoint Model

The adjoint model of is a function mapping
to given by

• Note that is a scalar. Hence setting and and calling
the adjoint model once gives the full vector of partial derivatives of

.

• The Jacobians are not formed explicitly and sparsity is
exploited.

• It can be proved that, in general, computing requires no more than
five times as many floating point operations as computing .

• This implies that the adjoint can give the full gradient at a cost which is
a (small) multiple of the cost of running .

• However to implement the adjoint model we need to solve a dataflow
reversal problem which dominates by far the computational cost.

• Hence typical values of are between 5 and 50, depending on the
specific code.

Adjoint Model and Memory Requirements

Performing adjoint calculations requires solving a data flow reversal problem:
the program essentially has to be run backwards. Many AD tools (including
dco) approach this by running the program forwards and storing intermediate
calculations to memory in a datastructure called a tape. Even for relatively
simple codes the tape can be several GBs, and for production codes will
typically exceed the capacity of even large memory machines.

To solve this problem, dco has a flexible interface which allows users to easily
insert checkpoints at various points in their code. When the code is run
backwards the final checkpoint is restored and that section of computation
taped and played back, then the second-to-last checkpoint is restored and that
section of computation is taped and played back (with the previous playback's
results), and so on. In this way memory is traded for flops, with the result that
the size of the tape can be constrained almost arbitrarily.

This functionality is essential in getting adjoint models of production codes to
run at all. For more information on checkpointing as well as other techniques
of reducing the memory footprint of adjoint codes, please contact us
(/content /nag-technical-support-service#contact).

f = (x, ,)x(1) F(1) x(1) y(1) × ×RR
n

R
n

R
n

= + ∇f(x) ⋅x(1) x(1) y(1)

y(1) = 1y(1) = 0x(1)

F(1)

f

∂ /∂xi+1 xi

F(1)

f

R f

R

Privacy - Terms

https://www.nag.com/content/nag-technical-support-service#contact
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

Sign up for the NAG
newsletter

SUBMIT 

Copyright 2022, Numerical Algorithms Group Ltd (The)

WORLDWIDE LOCATIONS (/CONTENT/WORLDWIDE-CONTACT-INFORMATION-0)



(htt
ps://



(https
://ww



(https:/
/www.



(https://w
ww.yout

(https://
github.c

AD SOLUTIONS MORE INFORMATION 

Blog (/content/nag-blog)
NAGnews (/content/nagnews-0)

Case Studies (/content/case-

studies)

Contact us (/content/worldwide-

contact-information)

ABOUT NAG (/CONTENT/ABOUT-NAG)

Contact support (/content/technical-support-

service-overview#contact)

Documentation (/content/software-documentation)

Installer's & Users' Notes (/content/installers-and-

users-notes-nag-products)

Downloads (/content/software-downloads)
Technical Reports (/content/technical-report-

repository)

SUPPORT (/CONTENT/TECHNICAL-SUPPORT-SERVICE-
OVERVIEW)

Privacy Notice (/content/privacy-notice) Trademarks (/content/trademarks)

Privacy - Terms

https://www.nag.com/content/worldwide-contact-information-0
https://twitter.com/nagtalk
https://www.facebook.com/NAGTalk
https://www.linkedin.com/company/nag/
https://www.youtube.com/user/NumericalAlgorithms
https://github.com/numericalalgorithmsgroup
https://www.nag.com/content/algorithmic-differentiation-solutions
https://www.nag.com/content/nag-blog
https://www.nag.com/content/nagnews-0
https://www.nag.com/content/case-studies
https://www.nag.com/content/worldwide-contact-information
https://www.nag.com/content/about-nag
https://www.nag.com/content/technical-support-service-overview#contact
https://www.nag.com/content/software-documentation
https://www.nag.com/content/installers-and-users-notes-nag-products
https://www.nag.com/content/software-downloads
https://www.nag.com/content/technical-report-repository
https://www.nag.com/content/technical-support-service-overview
https://www.nag.com/content/privacy-notice
https://www.nag.com/content/trademarks
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

twit
ter.c
om/
nagt
alk)

w.fac
ebook
.com/
NAGT
alk)

linkedi
n.com/
compa
ny/nag
/)

ube.com/
user/Nu
mericalAl
gorithms)

om/num
ericalal
gorithm
sgroup)

Privacy - Terms

https://twitter.com/nagtalk
https://www.facebook.com/NAGTalk
https://www.linkedin.com/company/nag/
https://www.youtube.com/user/NumericalAlgorithms
https://github.com/numericalalgorithmsgroup
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

