
Algorithmic Differentiation
in More Depth

To delve a little more into AD, consider a computer implementation of a
function  with  inputs and one output, i.e. . AD can be applied to
vector-valued functions as well, but to keep things simple we only consider
real valued functions below.

AD comes in two modes, forward and reverse.

Forward (tangent-linear) Mode AD

The forward (or tangent-linear) AD version of  is a function 
given by

for inputs  where the dot is regular dot product. To get the whole
gradient of  we let  range over Cartesian basis vectors and call 
repeatedly.

• The runtime of  is typically similar to the runtime of 

• Computing the whole gradient is roughly  times the cost of computing 

• Forward mode AD has roughly the same cost as finite differences, but
computes gradients to machine precision

Forward mode AD is typically used when  is small, say less than 30, although
the exact figure will depend on the function being differentiated. Above this,
adjoint methods are used.
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Adjoint Mode AD (or reverse mode)

Intuition

To understand adjoint mode AD it helps to consider an input  being
moved along by a sequence of function calls to an output 

We want the gradient  and by the Chain Rule this is just

Mathematically

Mathematically it doesn't matter which way we evaluate this. The usual way is
left to right

and this is natural since it corresponds to the order of program execution: the
program first computes , then , and so on. However it involves matrix-
matrix multiplications followed by final matrix-vector product since in general
each Jacobian  is a matrix.

Suppose instead we started from the right

Now everything is matrix-vector products  which are much faster, however we
effectively need to run the program backwards:

• The data to compute  is only available at the end of the
calculation -- it requires  and , which requires , which requires 

 and so on

• One way to solve this is to run the program forwards and store all
relevant intermediate values

• Then we step backwards, constructing the Jacobians  from the
stored values, and performing the matrix-vector products
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This whole approach to computing gradients is called the adjoint mode of AD.

The Adjoint Model

The adjoint model of  is a function  mapping 
to  given by

• Note that  is a scalar. Hence setting  and  and calling
the adjoint model  once gives the full vector of partial derivatives of 

.

• The Jacobians  are not formed explicitly and sparsity is
exploited.

• It can be proved that, in general, computing  requires no more than
five times as many floating point operations as computing .

• This implies that the adjoint can give the full gradient at a cost which is
a (small) multiple  of the cost of running .

• However to implement the adjoint model we need to solve a dataflow
reversal problem which dominates by far the computational cost.

• Hence typical values of  are between 5 and 50, depending on the
specific code.

Adjoint Model and Memory Requirements

Performing adjoint calculations requires solving a data flow reversal problem:
the program essentially has to be run backwards. Many AD tools (including
dco ) approach this by running the program forwards and storing intermediate
calculations to memory in a datastructure called a tape. Even for relatively
simple codes the tape can be several GBs, and for production codes will
typically exceed the capacity of even large memory machines.

To solve this problem, dco  has a flexible interface which allows users to easily
insert checkpoints at various points in their code. When the code is run
backwards the final checkpoint is restored and that section of computation
taped and played back, then the second-to-last checkpoint is restored and that
section of computation is taped and played back (with the previous playback's
results), and so on. In this way memory is traded for flops, with the result that
the size of the tape can be constrained almost arbitrarily.

This functionality is essential in getting adjoint models of production codes to
run at all. For more information on checkpointing as well as other techniques
of reducing the memory footprint of adjoint codes, please contact us
( /content /nag-technical-support-service#contact ).
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