
22/04/2022, 14:29 Algorithmic Differentiation Masterclass Series 2 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2 1/28

Algorithmic Differentiation
Masterclass Series 2
Published 11/08/2020 By Jacques Du Toit

Computing Jacobians and AD
Masterclass Follow-up
Questions
This blog follows up discussions which arose from the Algorithmic
Differentiation Masterclass 2 delivered on 6 August 2020 and is meant for
attendees of the class.

So how would you explain that to a friend?

It's hard to define exactly what we mean when we say "What's the intuition
behind that?" My second year of mathematics at university systematically
destroyed any intuition I ever thought I had about maths. My lecturer had a Privacy  - Terms
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passion for counterexamples and gleefully smashed all our "naive" beliefs
about how the world worked. This led me to think that intuition was simply the
lies we tell ourselves, to get by in life.

But reducing intuition to nothing more than "useful lies" is a little harsh. A
more constructive approach might be to ask "how would you explain that to a
friend?" At an AD conference a few years ago I asked a delegate (over a few
pints) how he would explain adjoints. He blinked and then said:

"Well I can tell you how I explained it to my partner.
We were having dinner in a Chinese restaurant, and I
picked up a baby squid and said: So imagine this squid
is my code. If I wiggle a tentacle and the head moves,
that's tangent mode AD. If I wiggle the head and the
tentacles move, that's adjoint mode AD."

I think there is simple genius in his answer! It beautifully captures the notion
that tangent has something to do with "perturbing" the inputs and studying the
effect on the output, whereas adjoint has something to do with perturbing the
output and studying the effect on all the inputs, at the same time. A slightly
more mathematical way to look at this is as follows. Consider a calculation

where we have an input , some intermediate value  and a final output value 
. The dimensionality of these quantities doesn't matter. Suppose we are

standing at  in our program. We have started running at , we've done a
whole lot of calculations and have reached , and we still have a lot of
calculations to go before we reach .

Then the derivative of  with respect to  is tangent mode AD. Adjoint mode
AD is the derivative of  with respect to . In other words, tangent mode AD
asks "What is the derivative of my current program state w.r.t my program
inputs?" In contrast, adjoint mode AD asks "What is the derivative of my
program outputs w.r.t my current program state?"

As we walk backwards, we are moving our program state back through time
until our program state is equal to our inputs. We start off with our program
state equal to our outputs, which implies that the "adjoint of  is equal to 1".
By the time our program state has reached our inputs , we've computed 
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. Similarly, for tangent mode our program state starts at , which implies
that the "tangent of  is equal to 1", and by the time our program state has
reached , we have computed .

Of course, this little story implies that the adjoint of  is equal to the tangent
of  since both are equal to . And this is a lie. But hopefully, it is a useful
lie.

Fixing the lie

For it to stop being a lie we need to introduce the notion of projection: both
tangents and adjoints compute projections of the Jacobian. A definition that I
find useful is the following. Fix some auxiliary variable . Then the tangent of 
is , while the adjoint of  is . For an operation  we
therefore have that the tangent of  is

Hence the tangent of  is equal to the Jacobian of  times , the tangent of 
. This is exactly the tangent model definition we had before, and we see that

the "vector" in the "Jacobian vector product" is the tangent of . The chain rule
forces this definition of the tangent model so that it is closed under function
composition: have a tangent model for  and another for ? Then the tangent
model of  is the composition of the two.

In a similar way, we can look at what happens in the adjoint model. Using our
definition we see that the adjoint of  is

since  is just equal to the output of the function . Hence the adjoint of  is
the transpose-Jacobian of  times the adjoint of , which again is our
"transpose-Jacobian vector product" definition. As before, we see that the
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"vector" in this definition is the adjoint of , which is necessary in the definition
of the adjoint model so that it will be closed under function composition.

Hopefully, this discussion gives some intuition of where these arbitrary
"vectors" in the definition of tangent and adjoint models are coming from. To
make sense of them, it is necessary to consider what happens when functions
are composed. Then we see that these vectors are needed in order to complete
the chain rule.

Jargon Busting

Every field has its jargon (terminology) and AD is no different. It is a fair
criticism that one shouldn't use terminology without first explaining what it
means, so let's look at some of this AD jargon. Thankfully, the concepts in AD
are very simple (we're not dealing with sigma algebras, for example). Recall
from our discussion in the previous blog post that we were looking at a limit of
the form

Here  represents our computer code,  is the input data to the code, and  is
the actual mathematical object that our code is trying to approximate. Both
Monte Carlo simulation and PDE solvers fit this form, as well as numerical
quadrature, numerical root finders, iterative solvers, and a wide range of other
numerical codes. AD is not concerned with , the mathematical thing we are
trying to approximate. It only knows about the code  for some  given and
fixed.

Recall that we defined the tangent model of AD as

the Jacobian of  multiplied by some vector  in the input space, and we
defined the adjoint model of AD as

the transpose Jacobian of  multiplied by some vector  in the output space.
Keep in mind that in addition to this, both tangent and adjoint models
also compute , the actual output of the underlying code. We can now start
looking at some of this terminology:

• forward mode AD: this is a synonym for the tangent model of AD.
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• reverse mode AD: this is a synonym for the adjoint model of AD.

• primal code: the numerical code . When we talk about the primal we
mean the underlying simulation code.

• language intrinsic: by this, we mean the most basic mathematical
operations that your computer language permits. These are usually 

 and the special functions 

• single assignment code (SAC): this is what we would obtain if we took
the primal code  and re-wrote it so that every line of code consisted of
a single language intrinsic operation and an assignment, for example, 

 or . Think of this as some kind of abstract
intermediate representation of the code. SAC is useful when considering
AD from a theoretical point of view, and sometimes when making
handwritten adjoints, but is not generally useful to people who just want
to apply AD to a code.

• computational graph (DAG): imagine that you are the floating-point unit
(FPU) in your computer, and also that you have hardware support for
special functions that the compiler knows about. Now suppose someone
starts executing the code . Imagine what it is you will be asked to
do from the start of the program until the end. FPUs don't see any
control flow and don't see any integer operations, so the only thing
you'll see is a long string of mathematical operations. These are
basically the SAC form of your program: each operation will be a basic
operation (arithmetic or special function), and the result is stored to a
variable (memory address). When seen this way, the execution of the
code  produces a directed acyclic graph (DAG) where each
assignment to a variable (for example ) represents a
node: the assignment node (  in this case) will have dependencies on the
variables which appear on the RHS (  and  in this case). The adjoint
model of AD, in general, requires one to somehow reverse this DAG. This
is a fundamental requirement of creating (discrete) adjoint codes.

• tangent seed: to evaluate the tangent model we need an arbitrary input
vector . This vector is called the (tangent ) seed. From our discussion
above, we know that this vector is nothing other than  where we
have the freedom to choose whatever  is. Very often we choose  to be
one of the Cartesian basis vectors in the input space.

• adjoint seed: to evaluate the adjoint model we need an arbitrary input
vector . This vector is called the (adjoint ) seed. From our discussion
above, we know that this vector is nothing other than , where we
have the freedom to chose whatever  is. Very often we choose  to be
one of the Cartesian basis vectors in the output space.

• source to source transformation tool: when considering how an adjoint or
tangent model of  might be implemented, we have three choices: write
the code by hand, use "an AD compiler", or use "an operator overloading
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tool". An AD compiler is called a source to source transformation tool. Its
job is to take in the code for  and to output the code for either the
tangent or adjoint model of . The compiler must analyse the source
code and must automatically do all the transformations necessary in
order to produce a correct adjoint or tangent. This is a non-trivial task,
and the richer the programming language in which  is written, the
harder this task becomes. For example, source to source transformation
tools for C++ are still (even after all these years) in their infancy.

• operator overloading tool: the alternative to a compiler is a runtime tool.
A compiler has to gather all the information it needs via static analysis.
For adjoint AD, this is challenging. A tool which instead defers all its
work to runtime has different program information available. Operator
overloading tools for AD are not compilers, in the sense that they do not
output source code (dco/c++ can in fact output source code, so this
boundary is beginning to blur). For adjoint mode they instead build the
computational graph in memory, along with local partial derivatives on
the edges between nodes. This allows the tool to compute the adjoint in
a very robust way. We'll talk a little more about how this is done below.

• tape: the data structure that operator overloading tools use to represent
the DAG of the underlying code.

• seeding: the process of setting the values of the tangent or adjoint seed
on an operator overloading tool is called seeding. Each tool has its own
API for seeding, but universally, seeding is nothing more than telling
your tool what the values of  or  are.

• harvesting: if there is a seed, then typically there's a harvest. Harvesting
is the process by which the Jacobian vector product, or the transpose-
Jacobian vector product, is extracted from the operator overloading tool
once the code has been run. Each operator overloading tool has its own
API for doing this, but universally, harvesting is simply the process of
retrieving the output of the tangent or adjoint models.

• registering an input: inputs to the adjoint model must be "registered"
with the tape. This anchors them as root nodes in the DAG. If we don't
register an input to the adjoint model, then derivative information won't
be propagated into this variable. Note that only inputs to the adjoint
model need to be registered: outputs and intermediate values are
automatically added to the DAG.

• discrete adjoint and continuous adjoint: a discrete adjoint is what you get
when you create an adjoint of your primal source code (i.e. build the
DAG, reverse the DAG). A continuous adjoint is any way of getting an
adjoint which does not involve building a DAG and reversing it.
Examples of this are implicit function theorem, or deriving analytic
adjoint systems for  (for example in PDEs) and solving those. We'll
look at some examples of continuous adjoints later on in the series.
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Continuous adjoints are also sometimes called symbolic adjoints. Prof.
Mike Giles has a paper
(https: //people.maths.ox.ac.uk/gilesm/files/AD2008.pdf ) on symbolic
tangents and adjoints for certain matrix operations. We have a paper
(https: //www.researchgate.net /publication/323137160_Adjoint_algorith
mic_differentiation_tool_support_for_typical_numerical_patterns_in_com
putational_finance) which among others looks at root finders and
optimisation (these results are well-known in the AD community).

• adjoint factor: for a given implementation of the adjoint model, the
adjoint factor is the ratio of the runtime of the adjoint code to the
runtime of the primal code. In other words, it is how many times the
adjoint code is slower than the primal code. This is the key metric by
which adjoint implementations are evaluated.

• tangent factor: the ratio of the runtime of the tangent code to the
runtime of the primal code, in other words, how many times slower the
tangent code is.

• active data: any data that we are differentiating. For example, these
could be model inputs that we want sensitivity information for. The term
is also used for intermediate variables which have to be differentiated
(chain rule) in order to compute the overall sensitivities we need.

• passive data: any data which we are not differentiating. This will include
all non-floating point data (integers, pointers, etc) but can also include
some floating-point data. For example, the output of a Uniform(0,1)
random number generator is almost surely going to be passive. The
initial bracketing interval of a bisection search algorithm will be passive.
There may be sections of your code that you just don't need to
differentiate through, for whatever reason.

The DAG

We described the DAG (computational graph) above at a very low level: we
thought about what the FPU might see and said the DAG more or less
represents the SAC form of the primal code. Looking at the DAG from the SAC
form of the primal is useful for theoretical work, and is sometimes useful for
writing tools, but descending this low into the code does limit us. We lose
information about the structure of our code: we forget what it is we're actually
trying to do, and which steps we need to go through in order to do it.

We've already said that exploiting structure is absolutely key in making
efficient adjoint implementations. So a DAG that hides this information is not
much use. Hence when we talk about "the DAG" in adjoint AD, it's more helpful
to understand the DAG as a "multi-granular" thing. At the finest granularity,
we see nodes and edges representing the SAC form of the primal. But then we
are also able to "zoom out" and coarsen this DAG into another DAG which Privacy  - Terms
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represents higher-level operations, for example, a matrix multiplication, a path
simulation, a linear solve, an optimisation, etc. And if we coarsen even more
we start seeing separate steps like calibration, simulation, aggregation and
post-processing. These tasks might indeed map onto different machines in our
cluster/data centre.

So when we talk about "the DAG" we're actually talking about the structure of
the primal code, at any level of detail that helps us do what we need to do.

Overture to the joys of the tangent model

We know the tangent model is suitable for codes with few inputs, while the
adjoint model is more suitable for codes with few outputs. In the webinar we
talked about when one might choose tangent model over the adjoint model, we
spoke about the adjoint factor, and we saw that the adjoint factor, the number
of inputs and the number of outputs together determine when one should use
tangent model and when one should use adjoint model.

What we did mention in the webinar but couldn't sufficiently emphasise, is
how much easier the tangent model is to implement than the adjoint model. It
is a doddle!! It is basically no work at all. The tangent model is pretty much
bulletproof, and your memory requirements are twice that of your primal code.
And, as we will see in future webinars, the tangent model can actually be
pretty fast on modern hardware (SIMD) since we can compute columns of the
Jacobian in parallel, which amortizes certain calculations and results in a more
efficient Jacobian calculation overall.

For this reason, it is appropriate to laud the tangent model and not merely
view it as the ugly stepsister. Not only is it invaluable in validating an adjoint
code, but it

• is fast to implement, hence cheap in terms of manpower

• is intuitive (it's similar in spirit to finite differences)

• is usable with only a modest understanding of AD (so it's something you
can delegate to others!)

• has modest memory use

• is actually pretty fast on modern hardware (the tangent factor is pretty
low)

• shows no difference in performance between operator overloading tools
and source transformation tools

• is trivial to re-use parallelism in the primal code
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• can be combined with "vector tangent mode" (more on this in the next
webinar) to push the effective tangent factor (to compute the whole
Jacobian) even lower

• tangents are necessary to compute Hessians efficiently

This really is a model worth celebrating! Ignore it at your peril.

Writing adjoints by hand

"No pain no gain" is a well-known maxim. No amount of "lecturing" will ever
give you a deep understanding of the adjoint model. At some point, you have
to take pencil and paper and actually do some of this, and we've reached that
point.

Our purpose with the webinar series is not really to teach people how to hand-
craft adjoints, or how to write AD tools. If this is your aim, then it is probably
better to take one of the many texts on AD and work through it. AD tools need
to be robust in the face of bad code, and for languages like C and C++, it's
surprising just how bad a piece of code someone can write (pointer aliasing is
but the start!).

Our goal with this webinar series is to help people become proficient users of
AD. You don't actually need to know that much about AD in order to be
proficient with a well-written operator overloading tool. A good AD tool really
does make it easy to get up and running quickly with adjoints and tangents. To
convince yourself of this, just take dco/c++ and try it on some simple examples.

Having said that, there is value in working through a few examples on hand-
writing adjoints. We're going to look at a few "tutorial" style questions to try
and really dig into the adjoint model. Solutions to the tutorials are given in at
the bottom of this blog post, but do try them on your own first. Use the
definition of the adjoint of a variable  as being  and work through the
data flow reversal. Remember that we first need to run the code forward, then
we need to backpropagate.

Tutorial 1

Let's take another look at the simple example Viktor used in the webinar:

w dt/dw
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double f(double x1, double x2)

{

    // u depends on x1 and x2, hence the adjoints of

    // x1 and x2 are ...

    double u = x1*x2;

    // y depends on u, hence the adjoint of u is ...

    double y = sin(u);

    return y;

}

Code this up and run it with an adjoint seed of one. Check your answer by
differentiating  and plugging some numbers in. Remember that in
the function signature you need to introduce variables for the adjoints of 
and . We can start formulating some rules for writing adjoints. The first rule
would be

1. Duplicate the active data segment: each active variable gets a
corresponding adjoint variable

Tutorial 2

The following example is one that I used to try to understand adjoints when I
first met them. It's inspired by Euler iteration, such as one might find when
solving an ODE or an SDE. Consider the following:

// Some smooth function, doesn't matter what it is

double h(double b, double x);

// The derivative of h w.r.t. b

double dh_db(double b, double x);

// The derivative of h w.r.t. x

double dh_dx(double b, double x);



void f(double b, double x, double &y)

{

   double x1 = x + h(b,x);

   y = x1 + h(b,x1);

}

Try and work out what the adjoint for this code snippet is. It doesn't matter
what  is, you can use the function from Tutorial 1 if you want. Work out the
mathematical derivatives  and  by crunching through the chain rule
(on paper) and compare that to your adjoint model. You should find that
something doesn't quite work with the adjoint of .

To fix this we need to increment the adjoint of  each time. So we can add our
second rule:

y = sin( )x1x2

,x1 x2

y

h

df/dx df/db

b

b
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1. Duplicate the active data segment: each active variable gets a
corresponding adjoint variable

2. Increment adjoint variables during backpropagation. Initialise all adjoint
variables to zero.

Of course when we say "Initialise all adjoint variables to zero" we exclude the
adjoint seeds that are the input to the adjoint model. These should be
initialised to whatever makes sense for your application, most likely the
Cartesian basis vectors of your output space.

Tutorial 3

Now let's look at another example. So much of the complexity in making
handwritten adjoints comes from variables that are overwritten. Let's first take
an example where nothing is overwritten:

void g(double z, double &y)

{

    u = exp(z);

    y = sin(u);

}

Once you've made a handwritten adjoint for that, try the following code:

void f(double &z)

{

    z = exp(z);

    z = sin(z);

}

Can you manage to get the correct derivatives? Can you now also get the
correct function return value?

Correctly dealing with the function f  above is somewhat tricky. We need to
extend our rules as follows:

1. Duplicate the active data segment: each active variable gets a
corresponding adjoint variable

2. Increment adjoint variables during backpropagation. Initialise all adjoint
variables to zero.

3. Store values during forward run that are overwritten.
4. Read-and-zero RHS adjoints before propagating them.

Tutorial 4

We can now put everything together to look at the function
Privacy  - Terms
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void f(double &x, double t)

{

    double y;

    y = x*x;

    x = sin(x*y*t);

    y = exp(x*t);

    x = sin(x*y*t);

}

Conclusion

The "rules" we wrote down above are incomplete since they don't deal with
loops and branching. It's relatively straightforward to extend them to cover
these cases. The key points are that loops must be reversed (in general) and
the same code branches must be taken as were taken in the forward run. This
typically means that data must be stored to determine which branch to take.
For a full list of rules and a detailed discussion of making handwritten adjoints,
see for example Uwe Naumann's book The Art of Differentiating Computer
Programs.

Hopefully by now we've established a few things:

• Writing adjoints by hand isn't that much fun

• Maintaining handwritten adjoint code is even less fun (especially if
someone else wrote it )

• Debugging handwritten adjoint code is absolutely no fun at all! Imagine
doing this on a larger code: how will you find where you've made a
mistake?

• We always increment adjoints, and we always initialise them to zero

• There is no difference, really, between tangents, adjoints and
mathematical differentiation. They are just different ways of performing
one and the same thing, namely the chain rule.

• If you have some other way of knowing what the adjoint of a particular
part of your code is (maybe you have a library of handwritten adjoint
functions, or you have a symbolic differentiation package, or you've
formulated an adjoint PDE, or you have an oracle, or whatever), then
your adjoint AD tool should give you some way of using that information,
since really all we're doing is applying the chain rule. dco/c++ allows you
to do this.

Source transformation tools for AD
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We spoke briefly about what a source transformation tool for AD is. It's a
compiler whose job it is to ingest your source code, and output source code
implementing the tangent or adjoint model. For the tangent model, there is
very little benefit in using source transformation vs an overloading tool, so
really we only talk about source transformation for the adjoint model.

The main advantage that source transformation tools have is that they don't
need to build the entire DAG in memory. They can analyse the source code and
can typically determine the DAG from that, or at least, can determine the
various possibilities for what the DAG might be (if we factor in runtime
information such as branching and loop counts). Therefore source
transformation tools use much less memory than operator overloading tools,
and can also perform a certain amount of common subexpression analysis and
optimisation.

There are two main problems with source transformation tools. Firstly, they are
very limited in the kind of input language they can ingest. Even the most
advanced source transformation tool for C, for example, can only handle
certain (restrictive) uses of dynamic memory management, certain if-
expressions and certain uses of pointers. There are also requirements that
some functions be re-entrant. There is no source transformation tool that we
are aware of that can handle the whole of C, let alone C++.

Secondly, using a source transformation tool can expose you to operational
risk. Any change to the primal code must be followed by someone re-running
the source transformation tool and integrating the output in your adjoint code
base. This last part isn't always completely automatic. If we forget to re-run
the source transformation tool, our adjoint code will be incorrect. Operator
overloading tools basically eliminate this kind of error.

What are C++ templates?

To understand how operator overloading tools are designed to be used, it's
worth talking a little about C++ templates. Not everyone on the webinar
speaks C++, and all our code examples are C++, so it's appropriate that we say
a few words here.

A C++ template is code which instructs the compiler how to output more code.
Hence it is sometimes called metaprogramming since we are writing a
program, which will end up producing a program, which will then get compiled.
Now this can sound a little scary, and in the hands of a skilled C++ developer it
can indeed become something very scary, but the basic idea is quite simple. (It
can become scary since the template syntax is Turing complete, but that's a
rabbit hole we're not going down today.) Privacy  - Terms
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C++ is a strongly typed language. This means in particular that

    void f(int x);

    void f(double x);

    void f(float x)

are all different objects. All three can happily coexist as function overloads,
but it's important to keep in mind that they are different things, all the way
down to the symbol names baked into the object code.

Suppose we now want to write a sort algorithm. The algorithm basically only
needs us to be able to compare two numbers, so the code body for
my_sort(int n, double *x)  and my_sort(int n, float *x)  and my_sort(int
n, int *x)  will all be basically identical. And we're not even going to
contemplate "aberrations" like my_sort(int n, void *x, char datatype)  or
similar.

So what we want is some way to write our sort code once, and then allow the
compiler to use that sort code with whatever type we want, as long as it
supports a comparison operation. Templates are a way to do just this:

template<class T>
void my_sort(int n, T* x)

{

   /* body of sort algoritm */

}

The code snippet above defines a function template. The template parameter
T  is a placeholder for a type. On its own, this template is useless. In fact,
compiling it won't even result in anything being put in your object file. This is
more or less obvious - the compiler doesn't know what T  is. It's a place-
holder.

It is only once we call my_sort  with a real type ( float, double, MyType,... )
that the compiler can create object code. At this point, the compiler
instantiates the template function with the concrete type and checks whether
the type has a comparison operator. If I didn't give MyType  a comparison
operator (oops, I forgot!) then I get a compiler error.

So the key thing about templates is they separate the algorithm from the data
type on which it operates. Operator overloading AD tools assume that your
functions are templated. If your functions are not templated, then you will have
to have separate function bodies for your primal, your tangent and your adjoint
codes, exposing you to operational risk once again.

Privacy  - Terms
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Operator overloading tools for AD

Operator overloading tools for AD work by replacing your floating-point data
type ( float, double ) with a special class which mimics a floating-point type.
Instead of computing with float  or double  you compute with an AD type
which is designed to support all floating-point operations and can be passed
to special functions (sin, exp, etc).

In tangent mode the AD type is pretty simple: it contains a value component
and a derivative component, and as your code executes, the primal and the
tangent projection are both computed at the same time.

In adjoint mode, however, more needs to happen. Now the AD type must
compute the primal value (output of the primal code) and it must construct the
DAG. Since the AD type has replaced the floating-point data types, it sees all
floating-point operations and can form the DAG corresponding to the SAC form
of your program. This DAG is built at runtime. As your program executes, the
AD type records data to an in-memory data structure called the tape. This tape
represents the DAG of your program. Once the program has finished, the tape
is "played back" or "interpreted" in order to back-propagate the adjoint seed to
the adjoints of the inputs.

As you can see, we've not mentioned templates yet. This should be expected
since operator overloading AD tools exist for languages such as Fortran and
Matlab, which don't have templates. In C++ though, almost all AD tools try to
use template metaprogramming techniques to decrease the amount of work
they need to do at runtime. Templates are therefore an optimisation only - they
are not needed to actually compute the tangent or adjoint.

What is typically done is that the AD adjoint type itself is templated and it
tries to use expression templates to reduce the amount of data recorded to the
tape. Details of exactly how this is done are beyond the scope of this webinar
series, but heuristically, expression templates are a metaprogramming
technique to produce new types on-the-fly in order to express some useful
information (maths operations in our case) at compile time.  For example, in the
code snippet



dco::ga1s<double>::type x1(5), x2(1);

dco::ga1s<double>::type y = sin(x1*x2) + x1*x1 - exp(x2)/x1;




the RHS of the assignment to y  is in fact constructing a new type on-the-fly,
invisible to the user, which represents the mathematics being performed. The
AD tool can now use metaprogramming to inspect this type, unpack the Privacy  - Terms



22/04/2022, 14:29 Algorithmic Differentiation Masterclass Series 2 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2 16/28

mathematics it represents, get hold of the inputs to the maths, and do
calculations with those inputs (for example, computing the local partial
derivatives  and . The key point is that all this happens at compile
time and not at runtime. Hence the AD tool has reduced the amount of work it
needs to do at runtime and has also reduced the amount of data it must store
to the tape. Without expression templates, the AD tool would need to consider
separately each of the primitive calculations x1*x2 , sin(v) , x1*x1 , v+u ,
exp(x2) , w/x1 , v-z . Each of these could potentially push data to the tape.

Tapes and dynamic memory management

It's unlikely we will know upfront how much memory our tape will need. Tapes
typically grow extremely fast. Conceptually, every assignment your code makes
to an active variable will push some data to the tape. Even a few seconds of
runtime is enough to create a tape hundreds of GB in size.

dco/c++ has a few different types of tape. There is a "chunk tape" which grows
in small(ish) chunks as more memory is needed. This allocation and
bookkeeping have a small overhead. Then there is a blob tape which allocates
a large amount of memory up-front (this is user-controllable), by default half
the available memory on your machine. This tape does not grow. Since Linux
only commits physical page frames once they are used, such a large allocation
isn't a problem. Big blob tape sizes are very efficient even for small problems
that use only a fraction of the available tape size.

Windows, unfortunately, has a different approach to memory management.
When you allocate memory in Windows, all the page frames are committed at
once, which is a fairly expensive operation. On Windows, we recommend that
you either adjust the size of the blob tape to fit your problem (the tape can tell
you how much memory it's currently using) or just to use the chunk tape. The
latter is a slightly slower option but is safer.

Other than these comments, it's typically not expensive to create or destroy
tapes. As you will see in upcoming sessions, there is also a file tape which
writes to disk rather than main memory.

Writing a driver

In the webinar, we saw how to write a driver for dco/c++. Now that we have
the terminology defined, we can summarise this process in words. For the
tangent mode:

dy/dx1 dy/dx2

Privacy  - Terms
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• Create dco/c++ tangent types for all your active inputs (suppose there
are  of them) and active outputs (suppose there are  of them)

• Allocate your  Jacobian 

• Loop from 

Seed all the inputs with the -th Cartesian basis vector in 

Run your code

Harvest the derivative information from the  output variables and
store to the -th column of 

• Continue the loop

For the adjoint model things are similar:

• Create dco/c++ adjoint types for all your  active inputs and your 
active outputs

• Allocate your  Jacobian 

• Run your code, which will record the tape

• Loop from 

Seed all the outputs with the -th Cartesian basis vector in 

Interpret the tape

Harvest the derivative information from the  input variables and
store to the -th row of 

Set the derivative information in the input variables to zero

• Continue the loop

Note that we only have to run the code once in order to build the tape. Tape
interpretation is much faster than building the tape in the first place, and with
some support from your AD tool, the tape interpretations above can be done in
parallel (dco/c++ allows this).

Although the APIs for all the operator overloading AD tools are different,
these blueprints for the tangent and adjoint drivers are universal.

Dimension reduction and making sense of the
output

I'm delighted that a few people have raised this question! Suppose we have a
simulation with many inputs and/or outputs. AD can give us the Jacobian. But
how useful is that Jacobian actually?

n m

m × n J

i = 1, … ,n

• i R
n

•
• m

i J

n m

m × n J

j = 1, … ,m

• j R
m

•
• n

j J

•
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For example, consider an aerodynamic simulation of a wing. We can compute
the sensitivity of the lift /drag to every mesh point on the surface of the wing,
but that could be hundreds of thousands or millions of points. We can produce
an image visualising this data, but that's probably all we can do with it. We
can't perturb any "individual mesh point" on the surface of our engineered
wing sample: it's a physical sheet of metal, there are limits to how we can
work that metal. Indeed, it may be more instructive to think about the wing's
geometry: chord length, span, camber, thickness, dihedral angles, etc. Asking
how the lift /drag changes with respect to these parameters might give more
insight into how the wing shape should be changed, rather than looking at
individual points on the surface.

When either the input or output dimensions are high, consider whether there
are not perhaps lower-dimensional quantities which would serve better as
"explanatory variables" (things which help to explain the sensitivity of the
simulation). A finance example might be a yield curve: we could look at each
instrument that went into the stripping, or we can look at the curve's
"geometry". If a simulation has lots of outputs, then it may make sense to
aggregate those somehow and look at the sensitivity of the aggregate, or
perhaps even the aggregate of the sensitivities (if the aggregation step is non-
linear).

In short: when studying sensitivities, keep in mind that you have the freedom
to change the simulation (pre-process, post-process) in order to get derivative
information that is more intuitive. Not only can this simplify the task of
understanding the data, but it can also make it easier to get the sensitivity
information in the first place, for example by reducing the input dimensionality
we might make the tangent model much more attractive.

Solutions to Tutorials

Let's take a look at how to make the handwritten adjoints for the few examples
I gave above.

Tutorial 1

Our function is

double f(double x1, double x2)

{

    double u = x1*x2;

    double y = sin(u);

    return y;

} Privacy  - Terms
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We first need to add derivatives for all the active inputs and outputs. Then we
need to run our code forward use the definition of adjoint of a variable  as
being  to write the backpropagation code:

double af(double x1, double &ax1, double x2, double &ax2)

{

    // Forward run

    double u = x1*x2;

    double y = sin(u);

    // End of forward run

    // Start of backpropagation



    // dt/du = dy/du * dt/dy

    double au = cos(u) * ay;

    // dt/dx1 = du/dx1 * dt/du

    ax1 = x2 * au;

    // dt/dx2 = du/dx2 * dt/du

    ax2 = x1 * au;



    // Return the primal value

    return y;

}

Tutorial 2

Recall that our code is

void f(double b, double x, double &y)

{

   double x1 = x + h(b,x);

   y = x1 + h(b,x1);

}

To see what's happening here we first need to crunch through the chain rule
for :

Now if we use our definition of the adjoint of a variable  as being  and
apply it to this code, we will obtain

w

dt/dw

df/db

df

db
= + (b, ) + (b, )

dx1

db
hb x1 hx x1

dx1

db

= (b, ) + (1 + (b, ))hb x1
dx1

db
hx x1

= (b, ) + (b,x)(1 + (b, ))hb x1 hb hx x1

w dt/dw
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void f(double b, double &ab, double x, double &ax, double &y, double
 ay)

{

   double x1 = x + h(b,x);

   y = x1 + h(b,x1);



   // dt/dx1 = dy/dx1 * dt/dy
   double ax1 = (1 + dh_dx(b,x1)) * ay;

   // dt/db = dy/db * dt/dy

   ab = dh_db(b,x1) * ay;



   // dt/dx = dx1/dx * dt/dx1
   ax = (1 + dh_dx(b,x)) * ax1;

   // dt/db = dx1/db * dt/dx1
   ab = dh_db(b,x) * ax1;

}

Looking at that final assignment, we can see that something isn't right. It's
clobbering the previous assignment to ab . Setting ay=1  and comparing our
code to the chain rule calculation above, we see that the first assignment to
ab  is correct, but the second assignment should not be an assignment, it
should be an increment so that we add the portion dh_db(b,x)*ax1  onto the
value already in ab .

So the rule when making adjoints is: always initialise all adjoint variables to
zero, and always increment adjoints during backpropagation.

Tutorial 3

The first example in Tutorial 3 should by now pose no difficulty:

void g(double z, double &az, double &y, double ay)

{

    u = exp(z);

    y = sin(u);



    // dt/du = dy/du * dt/dy

    double au = cos(u) * ay;

    // dt/dz = du/dz * dt/du

    az += exp(z) * au;

}

Now let's consider the second form of the function where everything is
overwritten and see whether we can untangle this mess. If you do things
naively you end up putting the wrong values into the derivative expressions.

Privacy  - Terms
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void f(double &z, double &az)

{

    // We are about to overwrite: store program state

    push(z);

    z = exp(z);

    // We are about to overwrite: store program state

    push(z);

    z = sin(z);

    // Save output state

    double ret = z;



    // Start of backpropagation

    pop(z);

    az = cos(z) * az;

    pop(z);

    az = exp(z) * az;

    // Restore output state

    z = ret;

}

When variables which are inputs to non-linear expressions are overwritten,
they must first be saved somewhere. Since the expression is non-linear, the
derivative will need the values of the inputs. We therefore have to save those
values so that we have them available during backpropagation. Of course, we
could recompute them as well. The point is that during the backpropagation,
we somehow need to reconstruct the inputs to non-linear expressions so that
we can compute their derivatives.

Similarly we need to save the output state before we start backpropagation.
This is because during backpropagation we will be changing the program state
(as we pop things off the stack), and in the process we will lose our output
value. This is a very easy mistake to make.

As you can see, this kind of thing really isn't much fun. Now imagine
debugging something like this that someone else has written (and of course
they documented their code, didn't they!).

Regarding our rule to "Read-and-zero RHS adjoints before propagating them",
if we implement this in our adjoint code then we get:
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void f(double &z, double &az)

{

    push(z);

    z = exp(z);

    push(z);

    z = sin(z);

    double ret = z;



    // Start of backpropagation.

    pop(z);

    { 

        double adj = az; az = 0;

        az += cos(z) * adj;

    }

    pop(z);

    {

        double adj = az; az = 0;

        az += exp(z) * adj;

    }

    z = ret;

}

This illustrates the general form of dealing with adjoint variables on the RHS
of expressions. As soon as the value is read (and before any other adjoint
variables are incremented) the adjoint variable must be zeroed out.

Tutorial 4

The last example puts all these ideas together. Recall that our code is

void f(double &x, double t)

{

    double y;

    y = x*x;

    x = sin(x*y*t);

    y = exp(x*t);

    x = sin(x*y*t);

}

The adjoint looks like this:
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void f(double &x, double &ax, double t, double &at)

{

    double y, ay(0);

    y = x*x;

    push(x);

    x = sin(x*y*t);

    push(y);

    y = exp(x*t);

    push(x);

    x = sin(x*y*t);

    double ret = x;



    pop(x);

    {

        double adj = ax; ax = 0;

        ay += cos(x*y*t)*x*t * adj;

        ax += cos(x*y*t)*y*t * adj;

        at += cos(x*y*t)*x*a * adj;

    }

    pop(y);

    {

        double adj = ay; ay = 0;

        ax += exp(x*t)*t * adj;

        at += exp(x*t)*x * adj;

    }

    pop(x);

    {

        double adj = ax; ax = 0;

        ay += cos(x*y*t)*x*t * adj;

        ax += cos(x*y*t)*y*t * adj;

        at += cos(x*y*t)*x*y * adj;

    }

    {

        double adj = ay; ay = 0;

        ax += 2*x * adj;

    }

    x = ret;

}

LEARN MORE ABOUT NAG AD SOLUTIONS 
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Author
Jacques Du Toit ( /people/jacques-du-toit )

Comments

Anonymous
14/08/2020

"Note that we only have to run the code once in order to
build the tape. Tape interpretation is much faster than
building the tape in the first place," 

Can we run adjoint code with AD turned off? How much
is it slower than the original code? I hope (and suspect ) it
should run at similar speed? Sometimes we are not
interested in derivatives, just the function values.

• Reply
( /comment/reply/node/7215/field_comment/85)

Jacques du Toit
14/08/2020

This depends very much on your AD tool. For most
tools, the answer is No.



For dco/c++ you can create an adjoint
implementation of your code and then turn "tape
activity" off. This means that no data is pushed to
the tape, in other words the DAG of your program
is not built and local partial derivatives are not
stored. This still has some overhead: it is small, I
don't have numbers to hand on how small it is. We
recently introduced a Binary Compatible Passive
Type. This is a type which is binary compatible with

A

JdT
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the adjoint type, but has no derivative information.
This type can be passed to a code compiled for
adjoint types and will result in even less runtime
overhead. The code is still a little slower than
computing with purely doubles or floats, but is
faster than just turning off tape activity.



However, as we discussed this week in the webinar
on Validation, it is advisable to have primal,
tangent and adjoint versions of the code since this
is the best way to validate for a correct
implementation. So our recommendation on best
practice is that people have all three versions in
their code base. The webinar discussed how to do
this while minimising operational risk, keeping
single-object compile times low, and maximising
build system parallelism. When adopting this
approach there isn't much of a need for
"passivating" an entire adjoint code (one may still
wish to passivate parts of it ).

• Reply
( /comment/reply/node/7215/field_comment/8
8)

Roland Bole
14/08/2020

This is great. Thank you very much for the effort. Very
much appreciated.

• Reply
( /comment/reply/node/7215/field_comment/87)

Mark L. Stone
14/08/2020

In the interest of jargon busting, it should be pointed out
that there is alternative AD terminology in widespread,
and I believe far more common, use:



forward mode <-----> tangent mode (tangent-linear)

reverse mode <-----> adjoint mode


RB
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The Wikipedia "Automatic differentiation" article
https: //en.wikipedia.org/wiki/Automatic_differentiation
primarily uses the terminology "forward mode" and
"reverse mode", although it does mention adjoints in
connection with reverse mode. The word "tangent"
appears exactly once in the Wikipedia article, and that is
as the name of a Google package provided as an external
link to the article.



I picked up AD on virtual street corners. In those working
class neighborhoods, if someone talked about tangent
mode or tangent-linear, they'd be met with a dazed look.

• Reply
( /comment/reply/node/7215/field_comment/89)

Jacques du Toit
17/08/2020

Thanks a lot Mark, a very good point indeed. I've
updated the Jargon section. You're right, different
groups sometimes have different words for the
same thing.

• Reply
( /comment/reply/node/7215/field_comment/9
0)

Mark L. Stone
18/08/2020

Adding the bullets for forward mode and
revers mode is a great improvement to the
article. Thanks.

• Reply
( /comment/reply/node/7215/field_com
ment/92)

Leave a Comment

JdT

MLS

Privacy  - Terms

https://www.nag.com/comment/reply/node/7215/field_comment/89
https://www.nag.com/comment/reply/node/7215/field_comment/90
https://www.nag.com/comment/reply/node/7215/field_comment/92
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/


22/04/2022, 14:29 Algorithmic Differentiation Masterclass Series 2 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2 27/28

Your name

Your Comment

SUBMIT 

Sign up for the NAG
newsletter

SUBMIT 

Copyright 2022, Numerical Algorithms Group Ltd (The)

Blog (/content/nag-blog)

NAGnews (/content/nagnews-0)
Case Studies (/content/case-

studies)

Contact us (/content/worldwide-

contact-information)

ABOUT NAG (/CONTENT/ABOUT-NAG)

Contact support (/content/technical-support-
service-overview#contact)

Documentation (/content/software-documentation)

Installer's & Users' Notes (/content/installers-and-

users-notes-nag-products)

Downloads (/content/software-downloads)

Technical Reports (/content/technical-report-
repository)

SUPPORT (/CONTENT/TECHNICAL-SUPPORT-SERVICE-
OVERVIEW)

Privacy Notice (/content/privacy-notice) Trademarks (/content/trademarks)

Privacy  - Terms

https://www.nag.com/content/nag-blog
https://www.nag.com/content/nagnews-0
https://www.nag.com/content/case-studies
https://www.nag.com/content/worldwide-contact-information
https://www.nag.com/content/about-nag
https://www.nag.com/content/technical-support-service-overview#contact
https://www.nag.com/content/software-documentation
https://www.nag.com/content/installers-and-users-notes-nag-products
https://www.nag.com/content/software-downloads
https://www.nag.com/content/technical-report-repository
https://www.nag.com/content/technical-support-service-overview
https://www.nag.com/content/privacy-notice
https://www.nag.com/content/trademarks
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/


22/04/2022, 14:29 Algorithmic Differentiation Masterclass Series 2 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-series-2 28/28

WORLDWIDE LOCATIONS (/CONTENT/WORLDWIDE-CONTACT-INFORMATION-0)



(htt
ps://
twit
ter.c
om/
nagt
alk)



(https
://ww
w.fac
ebook
.com/
NAGT
alk)



(https:/
/www.
linkedi
n.com/
compa
ny/nag
/)



(https://w
ww.yout
ube.com/
user/Nu
mericalAl
gorithms)

(https://
github.c
om/num
ericalal
gorithm
sgroup)

Privacy  - Terms

https://www.nag.com/content/worldwide-contact-information-0
https://twitter.com/nagtalk
https://www.facebook.com/NAGTalk
https://www.linkedin.com/company/nag/
https://www.youtube.com/user/NumericalAlgorithms
https://github.com/numericalalgorithmsgroup
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

