
22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 1/18

Algorithmic Differentiation
Masterclass 1
Published 04/08/2020 By Jacques Du Toit

Introduction to Algorithmic
Differentiation (AD) and
follow-up questions
This article follows up discussions which arose from the AD Masterclass 1
delivered on 30 July 2020 and is meant for attendees of the session.

What is AD?

AD is a technique to differentiate computer code. Formally, it is a
transformation of one source code into another. It is important to realise that

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 2/18

• AD takes as input a computer code

• AD produces as output a computer code

• The output computer code has something to do with differentiating the
input computer code. We'll try and make this notion precise below.

The fundamental questions of AD, broadly speaking, are

1. What must the output code compute?
2. How must the transformation actually work? In other words, how do we

actually produce the output code, given an input code?

Differentiability

Let's ignore for the moment the question of what the output AD code should
compute, and let's just assume that it somehow computes a mathematical
derivative.

We only differentiate differentiable functions, right?

In high school, we all learn that we can only differentiate functions that are
differentiable. If we differentiate the non-differentiable, well then we need to
ask ourselves some basic questions. What are we doing? Is the function
differentiable almost everywhere, except perhaps at some set of points? If so,
then we might be in good shape, as long as we avoid the points of non-
differentiability.

If the function is non-differentiable in some stronger sense, then we should
pause and think why we're trying to differentiate it. What are we intending to
do with these derivatives? Will they be suitable for that purpose?

This discussion may seem a little silly at first sight. The problem is that a lot of
computer code is non-differentiable. The functions max(), min() and abs() are
non-differentiable. Control flow such as if-statements almost always introduce
non-differentiabilities if the conditional depends on floating-point data. They
can easily introduce non-differentiabilities even if the conditional doesn't
depend on floating-point data.

Interchanging Limits

Back when we learned Real Analysis, we studied limits of the form

(η) = f(η)lim
n→∞

fn

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 3/18

and we examined conditions under which such limits might exist. We also
looked at what we might be able to conclude about , for example if is
continuous, does this mean that is continuous? (No, it doesn't). We then
moved on to look at limits of the form

and we considered the question of whether we could interchage these limits,
i.e. whether

In general, this is a delicate question! There are plenty of examples where this
sort of thing isn't true.

So what does this have to do with AD and differentiability? Typically, computer
programs are approximations of some sort. We create a computer program

 which approximates the actual mathematical object we care about .
An example might be a PDE solver. We discretise the PDE in some way, we
analyse the numerical scheme, we prove convergence of the numerical scheme

 to the mathematical object , and we know we're on good ground.

We then apply AD to our simulation code , and immediately we are in fact
asserting that

which is a very strong statement, and one which would probably cause a pure
mathematician some alarm. We have interchanged the order of the limits since
differentiation is just a limit operation. Given how delicate this operation can
be, we should take a moment to admit to ourselves that we doing something
which probably merits closer attention.

Understand where the non-differentiability is coming
from

When dealing with non-differentiable code it is important to try to understand
where the non-differentiability is coming from. Is the mathematical object
differentiable or not? If is differentiable, then, of course, there is no need in
general for each to be differentiable. A common example of where this sort
of thing happens is in Monte Carlo when we approximate

f fn

f

(η) = f(η)lim
m→∞

lim
n→∞

fn,m

(η) = (η)lim
m→∞

lim
n→∞

fn,m lim
n→∞

lim
m→∞

fn,m

(η)fn f(η)

fn f

fn

f(η) = (η) = (η)
∂

∂η

∂

∂η
lim

n→∞
fn lim

n→∞

∂

∂η
fn

f

f

fn

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 4/18

for some stochastic process . If is, for example, a Heavyside step function,
then applying AD to the computer code will yield a derivative of zero. The
mathematical object is differentiable in (assuming the distribution of
depends on it smoothly), so we know differentiating makes sense. The
problem is just in . If is differentiable but is not, then we might be able
to fix through some kind of smoothing. One might consider dropping in
some kind of smoothing function (sigmoid) or smoothing kernel (Gaussian).
Usually, it's best to go back to the mathematical object and see whether one
can use its properties to somehow derive a better (smooth) approximation .
This way one incorporates problem-specific information, which almost always
gives a more powerful approach (at the cost of generality, of course).

Suppose, however, that the mathematical object we are considering is not
differentiable. While we can create a smooth and differentiate it, in what
sense would the limit of such a derivative be useful? Why am I trying to
differentiate when in fact it's not possible to do so? What am I hoping to do
with that derivative? Does my use case make sense? It might well do.

One might also adopt the age-old mathematical maxim of changing the
problem. If is not differentiable, perhaps I can replace it with which is
differentiable, and use the derivatives of wherever I wanted to use the
derivatives of .

Conclusion: it is problem-specific

As you can see from our discussion above, there are more questions than
answers, and unfortunately, it depends on what you are trying to do. I would
urge everyone who is considering using AD to think a bit about differentiability
before jumping into the AD machine. The use of sigmoid-type smoothers has
been successful in several applications, it may work for you. Vibrato Monte
Carlo has looked specifically at the problem of expectations of non-
differentiable functionals of diffusion processes and has exploited the
smoothness of the diffusion kernel. Ideas from fuzzy logic have also been re-
cast as smoothers and have been applied in Monte Carlo simulations.

People sometimes say that finite differences can give them smoother
derivatives than AD since they can remove some of the underlying "noise".
While certainly a true statement, it depends a bit on what you view as "noise"
and what you view as "signal". Usually, the source of this noise is some kind of

f(η) = E[g(X(η))] ≈ g((η)) = (η)
1

n
∑
i=1

n

Xi fn

X g

η X

f

fn f fn

fn

f

fn

fn

f

f g

g

f

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 5/18

non-differentiability of the underlying code . While manageable for first-
order derivatives (Jacobians), finding suitable finite difference estimates for
higher-order derivatives (Hessians, ...) can become challenging.

As you will learn in subsequent webinars, AD doesn't know whether your code
is differentiable. AD effectively ignores all control flow and only looks at
calculations on floating-point data. Hence AD will compute an exact local
derivative of your code at a point , assuming your code is differentiable at

Accuracy of AD vs analytic derivatives

This question arises quite often. How accurate is AD compared with analytic
adjoints? Here the question is being asked about a given code , comparing
an "AD derivative" of with an "analytic derivative" of . Asking how
compares with AD applied to is not really what I'm talking about here since
that depends on how close to convergence is and whether the derivatives of

 actually have anything to do with the derivatives of .

As you will learn in subsequent webinars, AD is basically a local application of
the chain rule. If you look at any computer code as a sequence of operations on
floating-point data, then all operations on that data can be broken down into

• fundamental operators (+,-, /,)

• primitive functions (sin(), cos(), exp(), ...) which are basically the maths
functions in libm

AD knows the analytic derivatives of all these things and combines them using
the chain rule, just as students at high school learn how to differentiate more
complex expressions. In this sense, AD is mathematically exact.

However, in the real world of finite precision arithmetic, mathematically exact
isn't always enough. A treatment of floating-point arithmetic is outside the
scope of these lectures, but I would urge interested readers to look at this
widely cited paper (https: //docs.oracle.com/cd/E19957-01/806-
3568/ncg_goldberg.html).

The summary: in infinite precision arithmetic, AD would compute exact
mathematical derivatives. In the real world, the program produced by AD is
subject to the same round-off and truncation effects as any other numerical
code, and the way these quantities interact can be very subtle. The answer that
is generally given is that "AD is exact up to machine precision", which is a
statement that may be intuitively appealing, but would take many many pages
to unpack in a rigorous manner.

fn

η η

(η)fn

fn fn ∂f

fn

fn

fn f

⋅

Privacy - Terms

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 6/18

The Tangent and Adjoint Models

Let's return to our first question, namely, what should the output code of AD
compute? The answer to this is encapsulated in the two basic models of AD,
the tangent model and the adjoint model.

Let us consider a function where and . Then the tangent
model computes the Jacobian-vector product

for any . In other words, the tangent model takes as input and
produces as output the value and the Jacobian-vector product with .

The adjoint model computes the transpose-Jacobian-vector product

for any . In other words, the adjoint model takes as input and
produces as output the value and the transpose-Jacobian-vector product with

.

Why do these models return products between Jacobians and vectors, rather
than Jacobians directly? The answer is so that both AD models are closed
under function composition. If one has a tangent model of and a separate
tangent model of , then the tangent model of is the tangent model of
composed with the tangent model of . You can check that the same is true for
the adjoint model.

While these definitions are very simple, one needs to look deeper to
understand their implications. We will dig into these things in detail in the
second lecture, but there is no harm in giving a little preview. Consider a chain
of operations where and . The tangent model of
this is or if we write it out slightly differently

Similarly, the adjoint model is , or written slightly
differently,

y = f(x) x ∈ R
n y ∈ R

m

⋅ = []Jf x⃗
∂f

∂x
x⃗

∈x⃗ R
n x, x⃗

y x⃗

⋅ =J T
f

y ⃗ []∂f

∂x

T

y ⃗

∈y ⃗ R
m x, y ⃗

y

y ⃗

f

g f(g) f

g

y = h(g(f(x))) x ∈ R
n y ∈ R

m

((⋅))Jh Jg Jf x⃗

⋅ ⟶ ⋅ (⋅)⟶ ⋅ (⋅ (⋅))Jf x⃗ Jg Jf x⃗ Jh Jg Jf x⃗

⋅ (⋅ (⋅))J T
f

J T
g J T

h
y ⃗

⋅ (⋅ (⋅))⟵ ⋅ (⋅)⟵ ⋅J T
f

J T
g J T

h
y ⃗ J T

g J T
h

y ⃗ J T
h

y ⃗
Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 7/18

What we notice above is that the order of computation of the two models is
different. The tangent model follows the same order of computation as the
original program: . As we'll see in subsequent sessions, this will
mean that tangent mode AD is very simple to implement.

However, the adjoint model follows a different order of computation:
 brought about by the transpose in its definition. The adjoint model,

in fact, walks backwards through the program. In addition, it is clear that if
 above are non-linear, then computing for example will require the

value of , and similarly computing will require the value of . So
the adjoint model is in some sense even stranger - in order to walk backwards
it must have quantities available which would only be known once the program
has been run forwards.

This observation forms the basis of our understanding of the adjoint model.
Certainly, one can imagine a few ways of achieving this. For example, we can
run our program forwards, computing each Jacobian we need and storing it,
and then using them in the backward pass. Indeed, we could even multiply up
the Jacobians in the forward pass as we go, and then the backward pass
consists of a single matrix-vector product. However, this isn't a good idea since
the forward pass would then consist of matrix-matrix products, which are
expensive. The adjoint model itself only requires matrix-vector products.

Perhaps we can get by without actually storing the Jacobian matrices. Perhaps
instead of storing we could try to recompute in the backward
pass. And so on.

In general, the adjoint model is a data flow reversal problem and there are
multiple different ways of achieving it. Using this flexibility is absolutely
essential in creating an efficient implementation of the adjoint of a non-trivial
code.

Are there other models of AD?

This question sometimes gets asked. So we have tangent and adjoint models:
are there other models? Not really by name, but yes, there are other ways of
looking at AD.

I'm not going to discuss this in any depth or rigour, but let's see if we can at
least get a heuristic understanding. AD is really computation on a graph.
Vertices represent program variables and edges represent local partial
derivatives between the program variables. If one asks, for example, how to
compute a Jacobian-vector product, then that corresponds to a particular

f → g → h

h → g → f

f, g, h Jg

f(x) Jh g(f(x))

g(f(x)) g(f(x))

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 8/18

operation that one needs to perform on that graph. The tangent model outlined
above is one way of doing that and proceeds by sweeping forward through the
graph, propagating the matrix-vector product.

However, one can also examine the structure of the graph to try and optimize
the execution of the operation that needs to be performed. For certain shapes
of graph, one can eliminate internal vertices by combining edges to reduce the
number of multiply-adds that need to be performed by the operation overall.

This kind of graph optimization is combinatorial in nature, and finding the
optimal vertex elimination for a given operation on a graph is known to be NP
complete (that means it's hard to do). Since the tangent and adjoint models are
just two ways of operating on the graph, graph optimization will, in theory,
deliver an algorithm that has fewer multiplications and additions than either of
these two models. However implementing that optimal graph operation may
not be straightforward at all, for all the same reasons that implementing an
adjoint is not straightforward. On modern computing architectures, doing
floating-point arithmetic is vastly cheaper than storing and retrieving data
from memory.

For this reason, graph optimization is not done very often. However, we do play
around with the graph's structure for other reasons. As we'll see in subsequent
sessions, adjoint codes are very memory intensive and a key task is controlling
memory use. Jacobian preaccumulation is a technique that collapses sections of
the computational graph into local Jacobians. What this does is replace a given
block of vertices and edges by a sparse matrix, with the aim of reducing
memory use. We will cover Jacobian preaccumulation in a future session.

Validation

The question often arises how to validate (check for correctness) a given AD
implementation. This is the subject of an entire webinar, so I won't say much
here. The short answer is: yes, it is possible to check for correctness without
having a finite difference estimate of your program. Indeed, given how difficult
it can be to choose the correct perturbation size , it's not a good idea to check
an AD program with finite differences unless you are experienced in getting
good finite difference estimates of your code.

The way to validate an AD implementation is to verify the tangent-adjoint
identity. Recall that the tangent model computes and the adjoint
model computes . Since the transpose of a scalar is just itself, we
see that

h

⋅ ∈Jf x⃗ R
m

⋅ ∈J T
f

y ⃗ R
n

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 9/18

for every and . So to validate an AD implementation you need
both the tangent and adjoint models of the code. You seed with arbitrary
vectors and , run both codes, and then compute the identity above and
check that it holds.

In theory, this identity should be checked for a certain number of (linearly
independent) seed vectors in the input and output spaces, but in practice,
you'll typically find that if you've made a mistake then any random (non-zero)
vectors will show it, and conversely, if a given set of random vectors give
equality above, then it's highly likely the codes are correct.

GPUs

The question of GPUs came up a few times. Can one use AD on GPUs? Yes,
indeed one can. However, we need to be sure we're all talking about the same
thing. When the AD community talks about AD on GPUs, they often (but not
always) mean symbolic adjoints.

Machine learning frameworks like Tensorflow and PyTorch are essentially
dealing with known symbolic functions which are evaluated on the GPU. There
is a small amount of "user code" there, namely the activation function and
perhaps a few other bits and pieces, and the packages know how to
differentiate these symbolically, but the majority of the work is simple tensor
products. So the packages know what the symbolic adjoints of the neural
networks are, and it is these symbolic adjoints that they evaluate on the GPU.
Such symbolic adjoints are very efficient since there is no need to create or
analyse a computational graph.

However what practitioners in finance and engineering often mean when they
talk about "AD on GPU" is AD of arbitrary simulation code which happens to
be running on a GPU. These are not codes for which symbolic adjoints can be
derived (humanely), and there is a need for an AD tool to handle the code
which is running on the GPU.

And indeed this is also possible, however, it is not so simple as for a CPU. NAG
has an AD tool for CUDA and CPU (C++11) called dco/map. A discussion of
dco/map is beyond the scope of the webinar series, but a few words are
perhaps in order. The problem with accelerators is, well, they need to
accelerate. When they stop accelerating, they stop being accelerators. Hence a
very inefficient accelerator code is pretty much pointless. No-one writes CUDA
for fun (ahem well some of us do!), we write CUDA because there is a need to

⋅ (⋅) = (⋅ (⋅) = ⋅ (⋅)y ⃗ T Jf x⃗ y ⃗ T Jf x⃗)
T

x⃗ T J T
f

y ⃗

∈x⃗ R
n ∈y ⃗ R

m

x⃗ y ⃗

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 10/18

make something go significantly faster. While things have become simpler over
the years, writing accelerator code is hard, so the benefits have to be worth the
pain.

The implication of this is that an AD tool targeting accelerators must also
produce efficient accelerated tangent and adjoint code. Our dco/map manages
this, but the trade-off is that the user needs to know AD very well, and needs
to understand the target platform (CPU/CUDA) pretty well too. Consequently,
the tool is significantly harder to use than dco/c++. It's a specialist tool.

Doing (discrete) adjoints on GPUs is difficult because of the ratio of memory to
the number of threads. A modern compute-grade Tesla GPU such as a V100
has 32GB memory and just over 5000 cores, giving an average of just 6.4MB of
main memory per core. Gaming cards will have much less than this. In
comparison, a CPU workstation might easily have 128GB of main memory and
64 cores, giving an average of 2GB main memory per core.

This drastic discrepancy in the available memory per core is a huge problem for
adjoint AD and prompted us to take an entirely different approach with
dco/map. While dco/c++ uses operator overloading to build the computational
graph in memory (we call this the tape), dco/map works as hard as it can to be
tape-free. Not having a tape means you don't have to store tons of data to
memory, but it means you need to figure out a different mechanism by which to
reverse the computational graph when computing adjoints. This we managed
to do (we need to place some restrictions on the user), and the performance is
pretty good. The tool is being used in production for Monte Carlo/XVA type
codes. During in-house testing on a prototype Monte Carlo code (G2++ model
driving LIBOR-type calculations) we managed to achieve an adjoint factor of
just over 3x.

Black Boxes

As we've seen, AD is a transformation from one source code into another.
What do you do, then, if your source code calls something for which you don't
have source code? This happens when code calls 3rd party libraries, which the
AD community refer to as "black boxes".

Without access to the source code of the black box, your options are somewhat
limited:

• Build a local Jacobian with finite differences and then try to insert this in
your AD calculation. Your AD tool needs to support this (dco/c++ does)

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 11/18

• Look up the mathematics that your black box is doing and derive a
handwritten tangent or adjoint of that (fun!). Then insert that into your
AD calculation. Your AD tool needs to support this (dco/c++ does)

• Persuade the vendor of your black box to also supply you with tangent
and adjoint versions of the black box. Of course, this is first prize. Use
these in your AD calculation. Your AD tool needs to support this (dco/c++
does)

NAG AD Library

The NAG AD Library is a set of NAG Library (/content /nag-library) routines for
which NAG has produced tangents and adjoints. The routines ship as part of
the regular NAG Library and although produced with a combination of
dco/fortran and handwritten/symbolic techniques, the AD routines can be used
with any AD tool. Interfaces are provided which are binary compatible with
dco/c++ (/content /algorithmic-differentiation-software), so that it is
straightforward to use the routines in a simulation code which is being
differentiated with dco/c++.

From the preceding discussion, the need for the AD Library is clear. Customers
use NAG Library routines in their codes. If they then want to differentiate those
codes, the NAG routines are black boxes. Thankfully, our customers don't have
to resort to the workarounds mentioned above: they win first prize! Their
library vendor has a deep understanding of AD and has done the necessary
work to expose the entire computational graph to the AD tool.

Benchmarks

There were several requests for benchmarks of dco/c++ (/content /algorithmic-
differentiation-software) against other AD tools. Just as there are lies, damned
lies and statistics, so there are lies, damned lies and benchmarks. AD codes
can perform quite differently on different codes: after all, they operate on the
level of the computational graph, which can vary hugely from one code to
another. If you are interested in benchmarks, I would urge you to get dco/c++
(/content /algorithmic-differentiation-software) and benchmark it yourself on
your own code. This is what a number of large banks did before buying global
licences for NAG's AD software (/content /algorithmic-differentiation-software).

The benchmarks below are anonymised: we're not going to identify which AD
tools are represented by which bars. All the tools tested are well known,
although one is perhaps a bit specific to finance. NAG has a close relationship
with the AD community and has huge respect for their work. We invest heavily
in our own AD software (dco/c++ and the NAG AD Library represent over 15

Privacy - Terms

https://www.nag.com/content/nag-library
https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.com/content/algorithmic-differentiation-software
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 12/18

person-years of research and development), but we also collaborate with many
groups. For this reason, we feel that some level of discretion is appropriate
when reporting benchmark results. The AD community is quite small.

To avoid confusion - none of the tools benchmarked below are machine
learning packages such as Tensorflow, PyTorch, MXNet or the likes. The tools
we benchmark against are general-purpose AD tools, designed not specifically
for tensor arithmetic but for any simulation. These are tools that you can apply
to create an adjoint of any C++ code.

The results below are a few years old now but are all I have to hand. I will dig
out more recent benchmarks and will update this post.

The image above shows the runtime factors of first-order adjoints for various
AD tools on a variety of in-house codes. The tools have been applied in the
most naive way possible, no further work was done to optimize the adjoint
implementation. " recording" is the runtime of the forward pass of the AD
tool divided by the runtime of the original code, and " interpretation" is
the runtime of the backward pass of the AD tool divided by the runtime of the
original code. Hence the axis represents a slowdown factor: how many times

R(n)

R(n)

x

Privacy - Terms

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 13/18

Author

slower the adjoint code was than the original code. This is the standard metric
by which adjoint AD codes are judged. The error bars in the plots indicate
standard deviations of the two runtimes.

The image above shows the corresponding memory use (in MB) for the various
AD tools. The memory use of dco/c++ (/content /algorithmic-differentiation-
software) is very competitive and it does have the fastest runtime. Later
webinars will discuss methods for reducing memory use and optimizing the
adjoint implementation, so these memory results should be seen as a baseline
only. The figure people look at more often is the runtime, which shows how
efficient the code is that the AD tool is producing.

LEARN MORE ABOUT NAG AD SOLUTIONS 

Privacy - Terms

https://www.nag.com/content/algorithmic-differentiation-software
https://www.nag.com/content/algorithmic-differentiation-solutions
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 14/18

Jacques Du Toit (/people/jacques-du-toit)

Comments

Michel Herrera
04/08/2020

Is it the dco/c++ using template meta programming under
the hood? Its seems to me like the computation graph is
generated during compilation time and evaluated during
runtime when you need to calculate the adjoints.

• Reply
(/comment/reply/node/7209/field_comment/76)

Jacques du Toit
05/08/2020

Yes dco/c++ is using template meta programming.
The computational graph is not really generated
during compilation, because during compilation the
AD tools doesn't know what the graph looks like.
Things like control flow, iteration counts, etc are
only known at runtime. So the DAG (directed
acyclic computational graph) can only really be
built during runtime. At compile time, the code to
build the graph is instantiated and compiled.

At runtime during the "forward pass" the DAG is
built in memory. During the "reverse pass" the DAG
is reversed and the adjoint projection is computed.

• Reply
(/comment/reply/node/7209/field_comment/7
8)

Mark L. Stone

MH

JdT

Privacy - Terms

https://www.nag.com/people/jacques-du-toit
https://www.nag.com/comment/reply/node/7209/field_comment/76
https://www.nag.com/comment/reply/node/7209/field_comment/78
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 15/18

04/08/2020

Thanks for the insightful blog. I'm looking forward to
future installments. There's one item, however, that's
easier said than done.

NAG produces tangent and adjoint versions of its black
box functions - and that's great.

As for other suppliers of black box functions:

1) The chances the vendor even understands what is
being requested (tangent, adjoint, algorithmic
differentiation, automatic differentiation) are remote

2) For those few vendors who do understand the request,
let's hope they are not drinking milk when they learn of
it. They are not likely to think development of tangent or
adjoint black boxes is an economically attractive
proposition.

Perhaps this would be plauisble for certain academic
packages. But those don't tend to be black boxes.

• Reply
(/comment/reply/node/7209/field_comment/77)

Jacques du Toit
05/08/2020

Indeed, I'm not aware of other numerical library
vendors who are making AD versions of their
functions. From a library vendor's point of view, AD
introduces considerable complexity.

• Reply
(/comment/reply/node/7209/field_comment/8
2)

Yassine E.
05/08/2020

Thanks Jacques for this blog and the detailled
explanations. I would like to ask if you can elaborate a bit
more why the cost of tangent model is roughly twice the
cost of F.

MLS

JdT

YE

Privacy - Terms

https://www.nag.com/comment/reply/node/7209/field_comment/77
https://www.nag.com/comment/reply/node/7209/field_comment/82
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 16/18

• Reply
(/comment/reply/node/7209/field_comment/83)

Jacques du Toit
05/08/2020

So the output of the tangent model is the original
function value F(x) as well as the Jacobian-vector
product. Hence the cost is at least as much as
computing F(x). The question then becomes how
expensive is it to compute the Jacobian-vector
product. Here it depends on the function. For
example if F(x) = exp(x), then the cost of the
Jacobian is more or less free. If F(x) = x1 * x2, then
the Jacobian-vector product is a multiplication and
a fused multiply-add, which is at most slightly
more expensive than the original function. If F(x) =
x1 / x2, then the Jacobian is rather more expensive
(more multiplications and additions).

So it depends what the function is doing.
Simulations typically contain fewer divisions than
they do additions or multiplications, and then there
are cache effects to take into account as well (the
derivative computation typically doesn't need to
fetch more data from memory). So in practice we
often observe a tangent factor of roughly 2. With
dco/map on GPUs I've seen tangent factors of
roughly 1, just because it's very hard to saturate a
GPUs compute power. In a future session we will
see how to push the tangent factor lower by using
what we call "vector tangent mode", but that's only
a speed improvement if you want the whole
gradient or Jacobian, rather than just a single
projection. Many applications do actually want the
Jacobian.

• Reply
(/comment/reply/node/7209/field_comment/8
4)

Leave a Comment

JdT

Privacy - Terms

https://www.nag.com/comment/reply/node/7209/field_comment/83
https://www.nag.com/comment/reply/node/7209/field_comment/84
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 17/18

Your name

Your Comment

SUBMIT 

Sign up for the NAG
newsletter

SUBMIT 

Copyright 2022, Numerical Algorithms Group Ltd (The)

Blog (/content/nag-blog)

NAGnews (/content/nagnews-0)
Case Studies (/content/case-

studies)

Contact us (/content/worldwide-

contact-information)

ABOUT NAG (/CONTENT/ABOUT-NAG)

Contact support (/content/technical-support-
service-overview#contact)

Documentation (/content/software-documentation)

Installer's & Users' Notes (/content/installers-and-

users-notes-nag-products)

Downloads (/content/software-downloads)

Technical Reports (/content/technical-report-
repository)

SUPPORT (/CONTENT/TECHNICAL-SUPPORT-SERVICE-
OVERVIEW)

Privacy Notice (/content/privacy-notice) Trademarks (/content/trademarks)

Privacy - Terms

https://www.nag.com/content/nag-blog
https://www.nag.com/content/nagnews-0
https://www.nag.com/content/case-studies
https://www.nag.com/content/worldwide-contact-information
https://www.nag.com/content/about-nag
https://www.nag.com/content/technical-support-service-overview#contact
https://www.nag.com/content/software-documentation
https://www.nag.com/content/installers-and-users-notes-nag-products
https://www.nag.com/content/software-downloads
https://www.nag.com/content/technical-report-repository
https://www.nag.com/content/technical-support-service-overview
https://www.nag.com/content/privacy-notice
https://www.nag.com/content/trademarks
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

22/04/2022, 14:30 Algorithmic Differentiation Masterclass 1 | nag

https://www.nag.com/blog/algorithmic-differentiation-masterclass-1 18/18

WORLDWIDE LOCATIONS (/CONTENT/WORLDWIDE-CONTACT-INFORMATION-0)



(htt
ps://
twit
ter.c
om/
nagt
alk)



(https
://ww
w.fac
ebook
.com/
NAGT
alk)



(https:/
/www.
linkedi
n.com/
compa
ny/nag
/)



(https://w
ww.yout
ube.com/
user/Nu
mericalAl
gorithms)

(https://
github.c
om/num
ericalal
gorithm
sgroup)

Privacy - Terms

https://www.nag.com/content/worldwide-contact-information-0
https://twitter.com/nagtalk
https://www.facebook.com/NAGTalk
https://www.linkedin.com/company/nag/
https://www.youtube.com/user/NumericalAlgorithms
https://github.com/numericalalgorithmsgroup
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

