3/8/13 Project 3: Reinforcement Learning

Project 3: Reinforcement Learning

Pac-Man seeks reward.
Should he eat or should he run?
When in doubt, g-learn.

Introduction

In this project, you will implement value iteration and g-learning. You will test your
agents first on Gridworld (from class), then apply them to a simulated robot controller
(Crawler) and Pac-Man.

The code for this project contains the following files, which are available in a zip
archive:

Files you will edit

valuelterationAgents.py A value iteration agent for solving known MDPs.

Q-learning agents for Gridworld, Crawler and Pac-

glearningAgents.py
Man

A file to put your answers to questions given in the

analysis.py .
project.

Files you should read but NOT edit

mdp.py Defines methods on general MDPs.

Defines the base classes valueEstimationAgent and

learningAgents.py , . .
QLearningAgent, which your agents will extend.

Utilities, including util.cCounter, which is particularly

util.py
useful for g-learners.
gridworld.py The Gridworld implementation

Classes for extracting features on (state,action) pairs.
featureExtractors.py Used for the approximate g-learning agent (in
glearningAgents.py).

Files you can ignore

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.html

3/8/13 Project 3: Reinforcement Learning

environment.py Abstract class for general reinforcement
learning environments. Used by gridworld.py.

araphicsGridworldDisplay.py Gridworld graphical display.

graphicsUtils.py Graphics utilities.
textGridworldDisplay.py Plug-in for the Gridworld text interface.

The crawler code and test harness. You will
crawler.py

run this but not edit it.

graphicsCrawlerDisplay.py GUI for the crawler robot.

What to submit: You will fill in portions of valuelterationAgents.py,
glearningAgents.py, and analysis.py during the assignment. You should submit
only these files. Please don't change any others.

Evaluation: Your code will be autograded for technical correctness. Please do not
change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder. However, the correctness of your implementation --
not the autograder's judgements -- will be the final judge of your score. If necessary,
we will review and grade assignments individually to ensure that you receive due
credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in
the class for logical redundancy. If you copy someone else's code and submit it with
minor changes, we will know. These cheat detectors are quite hard to fool, so please
don't try. We trust you all to submit your own work only; please don't let us down. If
you do, we will pursue the strongest consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the
course staff for help. Office hours, section, and the newsgroup are there for your
support; please use them. If you can't make our office hours, let us know and we will
schedule more. We want these projects to be rewarding and instructional, not
frustrating and demoralizing. But, we don't know when or how to help unless you ask.

MDPs

To get started, run Gridworld in manual control mode, which uses the arrow keys:
python gridworld.py -m

You will see the two-exit layout from class. The blue dot is the agent. Note that when
you press up, the agent only actually moves north 80% of the time. Such is the life of
a Gridworld agent!

You can control many aspects of the simulation. A full list of options is available by
running:

python gridworld.py -h

The default agent moves randomly

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.html

3/8/13 Project 3: Reinforcement Learning

python gridworld.py -g MazeGrid

You should see the random agent bounce around the grid until it happens upon an
exit. Not the finest hour for an Al agent.

Note: The Gridworld MDP is such that you first must enter a pre-terminal state (the
double boxes shown in the GUI) and then take the special 'exit' action before the
episode actually ends (in the true terminal state called TERMINAL STATE, which is not
shown in the GUI). If you run an episode manually, your total return may be less than
you expected, due to the discount rate (-d to change; 0.9 by default).

Look at the console output that accompanies the graphical output (or use -t for all
text). You will be told about each transition the agent experiences (to turn this off,
use -q).

As in Pac-Man, positions are represented by (x,y) Cartesian coordinates and any
arrays are indexed by [x] [y], with "north' being the direction of increasing v, etc.
By default, most transitions will receive a reward of zero, though you can change this
with the living reward option (-r).

Question 1 (6 points) Write a value iteration agent in valueIterationAgent, which
has been partially specified for you in valuelterationAgents.py. Your value
iteration agent is an offline planner, not a reinforcement agent, and so the relevant
training option is the number of iterations of value iteration it should run (option -1i) in
its initial planning phase. valueIterationAgent takes an MDP on construction and
runs value iteration for the specified number of iterations before the constructor
returns.

Value iteration computes k-step estimates of the optimal values, V. In addition to

running value iteration, implement the following methods for valuelterationAgent
using V.

e getValue (state) returns the value of a state.
e getPolicy(state) returns the best action according to computed values.
e getQValue (state, action) returns the g-value of the (state, action) pair.

These quantities are all displayed in the GUI: values are numbers in squares, g-values
are numbers in square quarters, and policies are arrows out from each square.

Important: Use the "batch" version of value iteration where each vector Vi is
computed from a fixed vector V.1 (like in lecture), not the "online" version where one

single weight vector is updated in place. The difference is discussed in Sutton & Barto
in the 6th paragraph of chapter 4.1.

Note: A policy synthesized from values of depth k (which reflect the next k rewards)
will actually reflect the next k+1 rewards (i.e. you return ny41). Similarly, the g-values

will also reflect one more reward than the values (i.e. you return Qg+1). You may
assume that 100 iterations is enough for convergence in the questions below.

The following command loads your valueIterationAgent, which will compute a policy
and execute it 10 times. Press a key to cycle through values, g-values, and the
simulation. You should find that the value of the start state (v(start)) and the
empirical resulting average reward are quite close.

python gridworld.py -a value -i 100 -k 10

Hint: On the default BookGrid, running value iteration for 5 iterations should give you
this output:

python gridworld.py -a value -1 5

ww w -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.htmil

3/8/13 Project 3: Reinforcement Learning

VALUES AFTER 5 ITERATIONS

Your value iteration agent will be graded on a new grid. We will check your values, g-
values, and policies after fixed numbers of iterations and at convergence (e.g. after
100 iterations).

Hint: Use the util.Counter class in util.py, which is a dictionary with a default
value of zero. Methods such as totalCount should simplify your code. However, be
careful with argMax: the actual argmax you want may be a key not in the counter!

Question 2 (1 point) On BridgeGrid with the default discount of 0.9 and the default
noise of 0.2, the optimal policy does not cross the bridge. Change only ONE of the
discount and noise parameters so that the optimal policy causes the agent to attempt
to cross the bridge. Put your answer in question2 () of analysis.py. (Noise refers to
how often an agent ends up in an unintended successor state when they perform an
action.) The default corresponds to:

python gridworld.py -a value -i 100 -g BridgeGrid --c
4 | i

Question 3 (5 points) Consider the DiscountGrid layout, shown below. This grid has
two terminal states with positive payoff (shown in green), a close exit with payoff +1
and a distant exit with payoff +10. The bottom row of the grid consists of terminal
states with negative payoff (shown in red); each state in this "cliff" region has payoff
-10. The starting state is the yellow square. We distinguish between two types of
paths: (1) paths that "risk the cliff" and travel near the bottom row of the grid; these
paths are shorter but risk earning a large negative payoff, and are represented by the
red arrow in the figure below. (2) paths that "avoid the cliff" and travel along the top
edge of the grid. These paths are longer but are less likely to incur huge negative
payoffs. These paths are represented by the green arrow in the figure below.

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.html

3/8/13 Project 3: Reinforcement Learning

Give an assignment of parameter values for discount, noise, and livingReward which
produce the following optimal policy types or state that the policy is impossible by
returning the string 'NOT POSSIBLE'. The default corresponds to:

python gridworld.py -a value -i 100 -g DiscountGrid -

4] | i

Prefer the close exit (+1), risking the cliff (-10)
Prefer the close exit (+1), but avoiding the cliff (-10)
Prefer the distant exit (+10), risking the cliff (-10)
Prefer the distant exit (+10), avoiding the cliff (-10)
Avoid both exits (also avoiding the cliff)

m a0 oo

question3a () through question3e () should each return a 3-item tuple of (discount,
noise, living reward) in analysis.py.

Note: You can check your policies in the GUI. For example, using a correct answer to

3(a), the arrow in (0,1) should point east, the arrow in (1,1) should also point east,
and the arrow in (2,1) should point north.

O-learning

Note that your value iteration agent does not actually learn from experience. Rather,
it ponders its MDP model to arrive at a complete policy before ever interacting with a
real environment. When it does interact with the environment, it simply follows the
precomputed policy (e.g. it becomes a reflex agent). This distinction may be subtle in
a simulated environment like a Gridword, but it's very important in the real world,
where the real MDP is not available.

Question 4 (5 points) You will now write a g-learning agent, which does very little on
construction, but instead learns by trial and error from interactions with the
environment through its update (state, action, nextState, reward) method. A
stub of a g-learner is specified in QLearningAgent in glearningAgents.py, and you
can select it with the option '-a g'. For this question, you must implement the
update, getValue, getQValue, and getPolicy methods.

Note: For getvalue and getPolicy, You should break ties randomly for better
behavior. The random.choice () function will help. In a particular state, actions that
your agent hasn't seen before still have a Q-value, specifically a Q-value of zero, and
if all of the actions that your agent has seen before have a negative Q-value, an

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.html

3/8/13

Project 3: Reinforcement Learning

unseen action may be optimal.

Important: Make sure that you only access Q values by calling getQvalue in your
getValue, getPolicy functions. This abstraction will be useful for question 9 when
you override getQvalue to use features of state-action pairs rather than state-action
pairs directly.

With the g-learning update in place, you can watch your g-learner learn under manual
control, using the keyboard:

python gridworld.py -a g -k 5 —-m

Recall that -x will control the number of episodes your agent gets to learn. Watch
how the agent learns about the state it was just in, not the one it moves to, and
"leaves learning in its wake."

Question 5 (2 points) Complete your g-learning agent by implementing epsilon-
greedy action selection in getAction, meaning it chooses random actions epsilon of
the time, and follows its current best g-values otherwise.

python gridworld.py -a g -k 100

Your final g-values should resemble those of your value iteration agent, especially
along well-traveled paths. However, your average returns will be lower than the g-
values predict because of the random actions and the initial learning phase.

You can choose an element from a list uniformly at random by calling the
random.choice function. You can simulate a binary variable with probability p of
success by using util.flipCoin (p), Which returns True with probability p and ralse
with probability 1-p.

Question 6 (1 points) First, train a completely random g-learner with the default
learning rate on the noiseless BridgeGrid for 50 episodes and observe whether it finds
the optimal policy.

python gridworld.py -a g -k 50 -n 0 -g BridgeGrid -e

1 | H

Now try the same experiment with an epsilon of 0. Is there an epsilon and a learning
rate for which it is highly likely (greater than 99%) that the optimal policy will be
learned after 50 iterations? questioné6 () should return EITHER a 2-item tuple of
(epsilon, learning rate) OR the string 'NOT POSSIBLE' if there is none. Epsilon is
controlled by -e, learning rate by -1.

Question 7 (1 point) With no additional code, you should now be able to run a g-
learning crawler robot:

python crawler.py

If this doesn't work, you've probably written some code too specific to the GridWorld
problem and you should make it more general to all MDPs. You will receive full credit if
the command above works without exceptions.

This will invoke the crawling robot from class using your g-learner. Play around with
the various learning parameters to see how they affect the agent's policies and
actions. Note that the step delay is a parameter of the simulation, whereas the
learning rate and epsilon are parameters of your learning algorithm, and the discount
factor is a property of the environment.

ww w -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.htmil

3/8/13 Project 3: Reinforcement Learning

Approximate Q-learning and State Abstraction

Question 8 (1 points) Time to play some Pac-Man! Pac-Man will play games in two
phases. In the first phase, training, Pac-Man will begin to learn about the values of
positions and actions. Because it takes a very long time to learn accurate g-values
even for tiny grids, Pac-Man's training games run in quiet mode by default, with no
GUI (or console) display. Once Pac-Man's training is complete, he will enter testing
mode. When testing, Pac-Man's self.epsilon and self.alpha will be set to 0.0,
effectively stopping g-learning and disabling exploration, in order to allow Pac-Man to
exploit his learned policy. Test games are shown in the GUI by default. Without any
code changes you should be able to run g-learning Pac-Man for very tiny grids as
follows:

python pacman.py -p PacmanQAgent -x 2000 -n 2010 -1

1 I i

Note that PacmanQAgent is already defined for you in terms of the QLearningAgent
you've already written. pacmanQAgent is only different in that it has default learning
parameters that are more effective for the Pac-Man problem (epsilon=0.05,
alpha=0.2, gamma=0.8). You will receive full credit for this question if the command
above works without exceptions and your agent wins at least 80% of the last 10 runs.

Hint: If your QLearningAgent works for gridworld.py and crawler.py but does not
seem to be learning a good policy for Pac-Man on smallGrid, it may be because your
getAction and/or getPolicy methods do not in some cases properly consider unseen
actions. In particular, because unseen actions have by definition a Q-value of zero, if
all of the actions that have been seen have negative Q-values, an unseen action may
be optimal.

Note: If you want to experiment with learning parameters, you can use the option -a,
for example -a epsilon=0.1,alpha=0.3,gamma=0.7. These values will then be
accessible as self.epsilon, self.gamma and self.alpha inside the agent.

Note: While a total of 2010 games will be played, the first 2000 games will not be
displayed because of the option -x 2000, which designates the first 2000 games for
training (no output). Thus, you will only see Pac-Man play the last 10 of these games.
The number of training games is also passed to your agent as the option
numTraining.

Note: If you want to watch 10 training games to see what's going on, use the
command:

python pacman.py -p PacmanQAgent -n 10 -1 smallGrid

1 | i

During training, you will see output every 100 games with statistics about how Pac-
Man is faring. Epsilon is positive during training, so Pac-Man will play poorly even after
having learned a good policy: this is because he occasionally makes a random
exploratory move into a ghost. As a benchmark, it should take about 1,000 games
before Pac-Man's rewards for a 100 episode segment becomes positive, reflecting that
he's started winning more than losing. By the end of training, it should remain positive
and be fairly high (between 100 and 350).

Make sure you understand what is happening here: the MDP state is the exact board
configuration facing Pac-Man, with the now complex transitions describing an entire
ply of change to that state. The intermediate game configurations in which Pac-Man
has moved but the ghosts have not replied are not MDP states, but are bundled in to
the transitions.

Once Pac-Man is done training, he should win very reliably in test games (at least

ww w -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.htmil

3/8/13

Project 3: Reinforcement Learning

90% of the time), since now he is exploiting his learned policy.

However, you'll find that training the same agent on the seemingly simple mediumGrid
may not work well. In our implementation, Pac-Man's average training rewards remain
negative throughout training. At test time, he plays badly, probably losing all of his
test games. Training will also take a long time, despite its ineffectiveness.

Pac-Man fails to win on larger layouts because each board configuration is a separate
state with separate g-values. He has no way to generalize that running into a ghost is
bad for all positions. Obviously, this approach will not scale.

Question 9 (3 points) Implement an approximate g-learning agent that learns
weights for features of states, where many states might share the same features.
Write your implementation in ApproximateQAgent class in glearningAgents.py,
which is a subclass of PacmanQAgent.

Note: Approximate g-learning assumes the existence of a feature function f(s,a) over
state and action pairs, which yields a vector fi(s,a) .. fi(s,a) .. fo(s,a) of feature
values. We provide feature functions for you in featureExtractors.py. Feature
vectors are util.Counter (like a dictionary) objects containing the non-zero pairs of
features and values; all omitted features have value zero.

The approximate g-function takes the following form

Q(s,a) = Z fi(s, a)w;

where each weight wj is associated with a particular feature fj(s,a). In your code, you
should implement the weight vector as a dictionary mapping features (which the
feature extractors will return) to weight values. You will update your weight vectors
similarly to how you updated g-values:

w; <+ w;+ alcorrection|fi(s,a)
correction = (R(s,a)+~V(s")) —Q(s,a)

Note that the correction termis the same as in normal Q-Learning.

By default, ApproximateQAgent uses the IdentityExtractor, which assigns a single
feature to every (state,action) pair. With this feature extractor, your approximate
g-learning agent should work identically to PacmanQAgent. You can test this with the
following command:

python pacman.py -p ApproximateQAgent -x 2000 -n 201

1 | 0

Important: rpproximateQAgent is a subclass of QLearningAgent, and it therefore
shares several methods like getaction. Make sure that your methods in
QLearningAgent call getQvalue instead of accessing g-values directly, so that when
you override getQvalue in your approximate agent, the new approximate g-values are
used to compute actions.

Once you're confident that your approximate learner works correctly with the identity
features, run your approximate g-learning agent with our custom feature extractor,
which can learn to win with ease:

python pacman.py -p ApproximateQAgent -a extractor=S

4] | 0

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.html

3/8/13 Project 3: Reinforcement Learning

Even much larger layouts should be no problem for your ApproximateQAgent.
(warning: this may take a few minutes to train)

python pacman.py -p ApproximateQAgent -a extractor=:s

1| | 0

If you have no errors, your approximate g-learning agent should win almost every time
with these simple features, even with only 50 training games.

Congratulations! You have a learning Pac-Man agent!

ww w -inst.eecs.berkeley .edu/~cs188/pacman/projects/reinforcement/reinforcement.htmil

