[image: image1.png]PROJECT 2: MULTI-AGENT PACMAN

Pacman, now with gh
Minimax, Expectima
Evaluation

Introduction

In this project, you will for the cla n of Pacman, including gh Along the wa

you

will implemnent both minimax and expectimax search and try your hand at evaluation function d

The code b,
rather than interming

has not changed much from the previous project, but please start with a fresh installation,
fil

from project

for you to grad s on your machine. This

in project 1, this project includes an autogra

our ans

can

be run on all questions with the command

python autograder.py

It can be run for ona particular question, stich

python autograder.py -q q2

It can be run for one particular test by cormmands of the form




[image: image2.png]python autograder.py -t test_cases/q2/0-small-tree

By default, the autograder displays graphics with the — option, but doesn't with the ~q option. You can

force graphics by using the --graphics flag, or force no graphics by using the -—no-graphics flag.

See the autograder tutorial in Project 0 for more information about using the autograder.

The code for this project contains the following file:

Keyfilesto read
multiAgents.py

pacman.py

game.py

util.py

Files you can ignore
graphicsDisplay.py
graphicsutils.py
textDisplay.py
ghostAgents.py
keyboardAgents.py

layout.py

available as a zip archive.

Where all of your multi-agent search agents will reside.
The main file that runs Pacman games. This file also
describes a Pacman Gamestate type, which you will use

extensively in this project

The lagic behind how the Pacman world works. This file
describes several supporting types like Agentstate, Agent,
Direction, and Grid,

Useful data structures for implementing search
algorithims.

Graphics for Pacman

Support for Pacman graphics

ASCH graphics for Pacman

Agents to contral ghosts

Keyboard interfaces to control Pacman

Code for reading layout files and storing their contents




[image: image3.png]autograder.py Project autograder

testParser.py Parses autagrader test and solution files
testClasses.py General autograding test classes

test_cases/ Directary containing the test cases for each question
multiagentTestClasses.py Project 2 specific autograding test classes

What to submit: You will fill in portions of multiAgents.py during the assignment. You should submit this file
with your code and comments. Please do not change the other files in this distribution or submit any of our
original files other than multiAgents.py.

Evaluation: Your code will be autograded for technical correctre:
provided functions or clas:

Please do not change the names of any

S within the code, or you will wreak havoc on the autograder. However, the

correctness of your implementation - not the autograder's judgaments - w
re. If nec

I be the final judge of your

ve due credit

ry,

will review and grade assignments individually to ensure that you re

for your work.

brissions in the cl

Academic Dishonesty: We will be checking your code against other
redundancy. If you copy
detectors are quite hard to fool, so please don't try. We trust you all to subrmit your own work only; please
don't let us down. Ifyou d

for logical
code and submit it with minor changes, we will know. These cheat

omeone el

uences available to us.

we will pursue the strongest con

Getting Help: You are not alone! If you find yoursel
Office hours, section, and the di
make our office hour

Uck on something, contact the course staff for help.

u

on forurm are there for your support; plea

use them. Ifyou can't

let us know and we will schedule more. We want these projects to be re

instructional, not frustrating and demoralizing. But, we don't know when or ho

vto help unle

Discussion: Post your questions (but not project solutions) on the Discussion tab. Please be careful not to

post spoilers.




[image: image4.png]Multi-Agent Pacman

First, play a game of cla

python pacman.py
Now, run the provided ReflexAgent in multiAgents.py:
python pacman.py -p ReflexAgent

Note that it plays quite poorly even on simple layouts:

python pacman.py -p ReflexAgent -1 testClassic

2 (in multiAgents.py) and make sure you understand what i

ing.

Question 1 (3 points)

Improve the Ref1exAagent in multiAgents.pyto play respectably. The provided reflex agent code provides
some helpful examples of methods that query the Gamestate for information. A capable reflex agent will
have to consider both food locations and ghost locations to perform well. Your agent should easily and
reliably clear the testclassic layout:

python pacman.py -p ReflexAgent -1 testClassic

Try out your reflex agent on the default mediunclag=1c layout with one ghost or two (and animation offto
speed up the display):

python pacman.py --frameTime 0 -p ReflexAgent -k 1

python pacman.py --frameTime 0 -p ReflexAgent -k 2

How does your agent fare? It will likely often die with 2 ghosts on the default board, unless your evaluation
function is quite good.
Note: you can never have more ghosts than the layout permits.

Note: As featur d)rather than just the values

rythe reciprocal of important values

themselves





[image: image5.png]Hote: The evaluation func
you'll be evaluating state

jon you're writing is evaluating state

on pairs; in later parts of the proj

Optons: Default gho

m; you can als:

sarerand

play for fun with slightly

smarter dir

onal ghos

susing -

g DirectionalGhost. Iftherar preventing you from telling whether your agent

mproving,

you can use € to run with a fix every game). You can also play

1 (same random choic

uickly.

multiple games in a row with —n. Turn off graphics with —q to run lots of game

You will r

ading: we will run your agent on the openclassiclayout 10 tim ive 0 points if your agent

times out, or never wins. You will r Stimes. You will r

ive 1 point if your agent wins at le rean

scoreis

addition 1 point if your agent's average

greater than 500, or 2 points
conditions with

fit is greater than 1000. You

can try your agent out under the:

python autograder.py -q ql

To run it without graph

python autograder.py -q ql --no-graphics

Don't spen

too much time on this question, though, as the meat of the project lies ahea




[image: image6.png]Question 2 (4 points)

Now you will write an adversarial search agent in the provided Mininazagent cla
Your minimax agent should work with any number of ghosts, so you'll have to write an algorithm that is

slightly more general than what you've previously seen in lecture. In particular, your minimax tree will have
multiple min layers (one for each ghost) for every maxlay

tub in multiAgents.py.

should also expand the game treeto an arbitrary d corethe leaves
ippli

MinimazAgent exten

prh

faults to scoreEvaluationFunction.

fyour minimax tree

with the self.evaluationFunction, wh

MultiAgentSearchAgent, wh

10 self. depthand
makes referer

self.evaluationFunction. Make sure your minimax

to these two variabl,
mmand line options.

appropriate as these variables are populated in response to

portant: A single search ply

an move and all the ghe

obeoneP

onsider

arch will inv

Ive Pacman and each ghost moving two time

eto

Grading: We will be ing your termine whether it explores the corr

number of game state:

This is the only way reliable way to d

ete:

me very subtle bugs in implementations of minimax. As a r
y about how many times

It,
U call Gamestate. getLegalactions. Ifyou call
omplain. To tes

the autograder will be very pic

it any more or less than necessary, the autograder will ¢

d debug your c

python autograder.py -q q2

Th
without grapt

es on a number of small trees,

will show what your algorithm . as well as ap.

man game. To run it

use:

python autograder.py -q q2 --no-graphics

Hints and Observations

o The implementation of minimax will lea to Pacman |
problem: as it is correct behaviour, it will pass the tes

rre

o The evaluation funci
ouldn't change this function, but recognize that now we're evaluating *s
e were for the reflex agent. Look-ahead agents evaluate future states whereas
ons from the current state.

rather than action
eflex agents evaluate





[image: image7.png]oftheinitial statein themininaxClassiclayoutare 9, 8,
/. Note that your minimax agent will often win (665/1000 gam
tion of depth 4 minimax

The minimax valu

python pacman.py -p MinimaxAgent -1 minimaxClassic -a depth=4

Pac er ofincrea

lways

an is

agent 0, and the agents move in ord ng agent index

ates in minimax

A hould be Game States, either passed in to getAction of generate

you will not be abstracting to simplifie

Gamestate.generatesuccessor. In this proj

On larger boar as openclassic and mediunClassic (the default), you'll fin
atnot dying, but quite bad at winning. He'll often thrash around without making progr
thrash around right next to a dot without eating it because he doesn't know where he'
that dot. Don't worry if you see this behavior, question 5 will clean up all of these i

He might even
go after eating

eath is unavoidabl
ant penalty for living. Sometime:
always a: me the worst

When Pac
b ofthe
but minimax agen

he will try to end the game as s
thisis the wrong thing to do with ran

om gho

python pacman.py -p MininaxAgent -1 trappedClassic -a depth=3

es the inthis cas

Make u understand why Pacman rus ghe





[image: image8.png]Question 3 (4 points)

Make a new agent that uses alpha-heta pruning to more efficiently explore the minimax tree, in
AlphaBetaAgent. Again, your algorithm will be slightly more general than the pseudocode from lectur
part ofthe challenge is to extend the alpha-beta pruning logic appropriately to multiple minimizer agents.

You shoul up (perhaps

d run in just a few

2pth 3 alpha-beta will run as fast as depth 2 minimax)

on smallcla; conds per move or faster

python pacman.py -p AlphaBetaAgent -a depth=3 -1 smallClassic

ould be

I 10 the MinimaxAgent minimax valte

, although
fferent tie-breaking behavior. Again, the minimax values ofthe

The AlphaBetaagent minimax valu

n

the actions it sel an vary becau

o

ateintheminimaxClassiclayout are 9, 8 7 and -492 for ively.

initial

he correct number of states, it i

to

heck your

etermine whether it explor

en. In other wor T

important that you perform alpha-beta pruning without reordering
in the order return

always be pro by Gamestate. getLegalActions
You must not prune on equality in order to match the set of states explored by our autograder.

alternatively, but incompatible with our autograder, would be to also allow for pruning on equality

ke alpha-beta o hild of the root node, but this will not match the autogr

on each d

the algorithm you should implement for this




[image: image9.png]Alpha-Beta Implementation

a: MAX's best option on path to root
B: MIN's best option on path to root

def max-value(state, a, B): def min-value(state , o, B):
initalize v = initialize v =+
for each successor of state: for each successor of state:
ax(y, value(suiccessor, o, ) inly, value(successor, o, )
v>Bretumy ifv<aretumny
axe, v) min(B, v)
returnv returny

To test and debug your cade, run

python autograder.py -q q3

This will show what your algorithm does on a nurmber of small trees, as well as a pacman game. To run it
without graphics,

use:

python autograder.py -q g3 --no-graphics

The correct implementation of alphabeta pruning will lead to Pacman losing some of the tests. This is not

problem: as it is

rrect behaviour, it will pass the tests.





[image: image10.png]Question 4 (4 points)

Minimax and alpha-beta are great, but they both a
makes optimal de

imethat you are playing against an adversary who
As anyone who has ever won tict

o

not always the case. In

oe can tell you, thi

this question you will implerent the Expect imaxAgent, wh

boptimal choic

deling probabilistic behavior

of agent

who may make s

As with the searc
algorithm
ba

d on generic trees. You

python autograder.py -q q4

Debugging on these s

mall and manageable test mmended and will help you to find bugs
quickly. Make sure when you compute your averages that you use floats. Integer

truncates, so that 1/2 with floats where 1.0/2.0 = 0.5

on in Python

0, unlike the cas

Once
of course not optimal minimax agents, an

your algorithm is working on small trees, you can observe its s

in Pacman. Ra

dorm ghos

d so modeling them with minimax search may not be appropriate
Expect inaxagent, will no longer take the min

ation a

but the exp ording to your

I of how the ghosts act. To simplify your me you will only be running against an

amongst their get Legalactions uniformly at random

in Pa

e how the ExpectimaxAgent behay an, run

python pacman.py -p ExpectimazAgent -1 minimaxClassic -a depth=3

You should now observe a more cavalier approach in close quarters with gho
that he could be trapped but might escape to grab a few more piec
stigate the results ofthese two scenarios:

In particular, if Pacman
of food, he'll at least try.

python pacman.py -p AlphaBetaAgent -1 trappedClassic -a depth=3 -q -n 10

python pacman.py -p ExpectimaxAgent -1 trappedClassic -a depth=3 -q -n 10




[image: image11.png]



[image: image12.png]Question 5 (5 points)

Write a better evaluation function for pacman in the provided function betterEvaluationfunction. The
evaluation function should evaluate states, rather than actions like your reflex agent evaluation function did.
You may use anytools at your disposal for evaluation, including your search code from the last project. With
depth 2 search, your evaluation function should clear the smallclassic layout with two random ghosts
more than halfthe time and still run at a reasonable rate (to get full credit, Pacman should be averaging
around 1000 points when he's winning).

python autograder.py -q 45

Grading: we will run your agent on the smallclassiclayout 10 times. We will assign points to your

evaluation fur

on in the following way:

If you win at least once without timing out the autograd ceive 1 points. Any agent not satisfying

these criteria will receive 0 points

5 time:

o +1 for winning at leas

reof at lea

o +1 for an average
games)

* The add
tim

Hints and Observations

or your reflex agent evaluation function, you may want to use the r
to food) rather than the values themselve





[image: image13.png]* One way you might want to write your evaluation function is to use a linear combination of featur
ompute values for features about the state that you think are important, and then combine tho
features by multiplying them by different values and adding the results together. You might e what
to multiply each feature by based on how important you think it is





[image: image14.png]Mini Contest (2 points extra credit)

Pacman's been doing well so far, but things are about to get a bit more challenging. This time, we'll pit
will actively chase Pacman instead

Pacman against smarter foes in a trickier maze. In particular, the gho
of wandering around randomly, and the maze features more twists and dead-ends, but also extra pellets to
give Pacman a fighting chance. You're free to have Pacman use any search procedure, search depth, and

evaluation function you like. The only limit is that games can last a maximum of 3 minutes (with graphics off),

50 be sure to use your computation wisl

re of at leas

a

Complete the implementation of ContestAgent. If your agent achie 2500 you'll get one

00 you'll get an additional point. Grade your answer by:

point. If your agent achieves a score of at lea

python autograder.py -q extra

Note:in a small fraction of Python environments we have found that your local run will generate different
randorn numbers than the edX run. You might want to discover this right away. If you are in that situation,
you'll probably want to submit into edX regularly to keep track of your progress

Project 215 done. Go Pacman!




