BerkeleyX – Artificial Intelligence (CS188X)

Project 1: Search has been released!
The project instructions can be found here.
In this project, you will implement the core search algorithms in the context of the Pacman-like game that you saw in lecture. In addition to developing general purpose search code, you will also get to create search problems and heuristics for the game itself. By the end of the project, you will have duplicated many of the demos you saw in lecture and enabled your agents to make make fast and optimal plans!

Note that part of the project involves correctly implementing the specified algorithms, and in this sense may be more like programming projects you have completed for other classes. However, another part of the project involves using your creativity to experiment with some open-ended challenge problems. A few points in the project are therefore more difficult than the rest, and perfect scores will require more than correctly implementing a spec.

The project is autograded: when you submit your code, our servers will check it for correctness and provide you feedback. You may submit as many times as you like, and we encourage you to keep working on the project as long as you like until the deadline (3/10). The autograder on the EC2 machines backing your submissions into edX is identical to the autograder you receive with the project. So it can make sense to complete your project while working just with the autograder you receive with the starter code, and then submit into edX (to register your grade) once done. Be aware that while the autograders are quite good at catching mistakes, they are not meant to replace your own debugging efforts.

We encourage you to work through Lectures 2 and 3, as well as Homework 1, before starting Project 1. As a supplement to the Lecture 2 and 3 materials, we have posted several step-by-step videos that give additional insight into the operation of depth-first, breadth-first and A* search.

As always, please avoid posting spoilers or detailed code snippets. In addition, while we encourage version control in any project, please do not host your code in any public place (i.e. please do not use Google code, public Github repositories, public Bitbucket repositories, etc.).

Happy searching,

Dan, Pieter, and the CS188x Course Team

PROJECT 1: SEARCH IN PACMAN


All those colored walls,
Mazes give Pacman the blues,
So teach him to search.

Introduction

In this project, you will implement generic search algorithms applicable to wide classes of problems. The course staff has supplied an autograder which includes test cases based on small graphs to help you debug your implementations. Once you have debugged on the graph based test cases, you can apply your search algorithm implementations to pacman to help him find paths through his maze world.

As in Project 0, the autograder can be invoked locally for you to grade your answers on your machine. This can be run with the command:

python autograder.py

See the autograder tutorial in Project 0 for more information about using the autograder.

The code for this project consists of several Python files, some of which you will need to read and understand in order to complete the assignment, and some of which you can ignore. You can download all the code and supporting files as a zip archive.

	Files you'll edit:

	search.py
	Where all of your search algorithms will reside.

	searchAgents.py
	Where all of your search-based agents will reside.

	Files you might want to look at:

	pacman.py
	The main file that runs Pacman games. This file describes a Pacman GameState type, which you use in this project.

	game.py
	The logic behind how the Pacman world works. This file describes several supporting types like AgentState, Agent, Direction, and Grid.

	util.py
	Useful data structures for implementing search algorithms.

	Supporting files you can ignore:

	graphicsDisplay.py
	Graphics for Pacman

	graphicsUtils.py
	Support for Pacman graphics

	textDisplay.py
	ASCII graphics for Pacman

	ghostAgents.py
	Agents to control ghosts

	keyboardAgents.py
	Keyboard interfaces to control Pacman

	layout.py
	Code for reading layout files and storing their contents

	autograder.py
	Project autograder

	testParser.py
	Parses autograder test and solution files

	testClasses.py
	General autograding test classes

	test_cases/
	Directory containing the test cases for each question

	searchTestClasses.py
	Project 1 specific autograding test classes


Using the Autograder

In order to expedite your development, the course staff has supplied an autograder which includes graph based test cases. We encourage you to master these test cases and debug on them before running your code with Pacman. Since the Pacman world is considerably more complex, and generally has much more state than the graph based test cases, debugging your code using Pacman will be a difficult and error prone process.

This page will show you some additional ways to invoke the autograder which you may find helpful during your development process. For example, to invoke the autograder for question 2 only, run

python autograder.py -q q2

Note that the extra credit is invoked using -q extra.

If you notice that you are failing a particular test within question 2, such asgraph_infinite.test, you can specify that you would like the autograder to run only that test as follows

python autograder.py -t test_cases/q2/graph_infinite

Notice that the argument given is the actual path to the file specifying the test case itself, sans the .test extension. If you explore the test_cases directory, you will notice that there is a subdirectory corresponding to each question, and that there is a.solution file corresponding to each test.

Finally, if you would like the autograder to display both the test case and the solution for all tests it runs, you may add the flag -p as follows

python autograder.py -p -t test_cases/q2/graph_bfs_vs_dfs

Once you're passing the graph based test cases and have used those to debug your code, we encourage you to give Pacman a try and watch your code help him navigate his world.

Welcome to Pacman

After downloading the code (search.zip), unzipping it, and changing to the directory, you should be able to play a game of Pacman by typing the following at the command line:

python pacman.py

Pacman lives in a shiny blue world of twisting corridors and tasty round treats. Navigating this world efficiently will be Pacman's first step in mastering his domain.

The simplest agent in searchAgents.py is called the GoWestAgent, which always goes West (a trivial reflex agent). This agent can occasionally win:

python pacman.py --layout testMaze --pacman GoWestAgent

But, things get ugly for this agent when turning is required:

python pacman.py --layout tinyMaze --pacman GoWestAgent

If Pacman gets stuck, you can exit the game by typing CTRL-c into your terminal.

Soon, your agent will solve not only tinyMaze, but any maze you want.

Note that pacman.py supports a number of options that can each be expressed in a long way (e.g., --layout) or a short way (e.g., -l). You can see the list of all options and their default values via:

python pacman.py -h

Note: if you get error messages regarding Tkinter, see this page
Question 1: Depth First Search (2 points)

In this question, you will implement the depth-first search (DFS) algorithm in thedepthFirstSearch function in search.py. To make your algorithm complete, write the graph search version of DFS, which avoids expanding any already visited states. As you work through the following questions, you might find it useful to refer to the object glossary (the second to last tab in the navigation bar above).

To help you get started, pseudocode for the search algorithms you'll write can be found in the lecture slides. Remember that a search node must contain not only a state but also the information necessary to reconstruct the path (plan) which gets to that state.

Important note: Make sure to use the Stack, Queue and PriorityQueue data structures provided to you in util.py! These data structure implementations have particular properties which are required for compatibility with the autograder.

Important note: All of your search functions need to return a list of actions that will reach a goal state from a start state.

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the details of how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively straightforward. Indeed, one possible implementation requires only a single generic search method which is configured with an algorithm-specific queuing strategy. (Your implementation need not be of this form to receive full credit).

As you complete your implementation, you may test it using the command

python autograder.py -q q1

Notice that the autograder includes a graph based test (test_cases/q1/graph_infinite) designed to make sure you have implemented the graph version of DFS as this will be a necessary improvement in the Pacman world.

Applying Your Search Implementations to Pacman

In searchAgents.py, you'll find a fully implemented SearchAgent, which plans out a path through Pacman's world and then executes that path step-by-step. The search algorithms you implement in questions 1-4 will formulate the plan.

First, test that the SearchAgent is working correctly by running:

python pacman.py -l tinyMaze -p SearchAgent -a fn=tinyMazeSearch

The command above tells the SearchAgent to use tinyMazeSearch as its search algorithm, which is implemented in search.py. Pacman should navigate the maze successfully.

Once your DFS implementation is complete, your code should quickly find a solution for:

python pacman.py -l tinyMaze -p SearchAgent

python pacman.py -l mediumMaze -p SearchAgent

python pacman.py -l bigMaze -z .5 -p SearchAgent

The Pacman board will show an overlay of the states explored, and the order in which they were explored (brighter red means earlier exploration). Is the exploration order what you would have expected? Does Pacman actually go to all the explored squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order provided by getSuccessors; you might get 246 if you push them in the reverse order). Is this a least cost solution? If not, think about what depth-first search is doing wrong.

Question 2: Breadth First Search (2 points)

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearchfunction in search.py. Again, write a graph search algorithm that avoids expanding any already visited states. Test your code using the autograder the same way you did for depth-first search.

python autograder.py -q q2

Once your BFS implementation is complete, you may wish to view its performance with Pacman. To do this, run

python pacman.py -l mediumMaze -p SearchAgent -a fn=bfs

python pacman.py -l bigMaze -p SearchAgent -a fn=bfs -z .5

Does BFS find a least cost solution? If not, check your implementation.

Hint: If Pacman moves too slowly for you, try the option --frameTime 0.

Note: If you've written your search code generically, your code should work equally well for the eight-puzzle search problem without any changes.

python eightpuzzle.py

Question 3: Uniform Cost Search (2 points)

While BFS will find a fewest-actions path to the goal, we might want to find paths that are "best" in other senses. Uniform-cost graph search achieves this by allowing us to find optimal solutions while associating a distinct cost with each action.

Implement the uniform-cost graph search algorithm in the uniformCostSearchfunction in search.py. We encourage you to look through util.py for some data structures that may be useful in your implementation.

The test cases provided by the autograder invoked as

python autograder.py -q q3

include graph based examples which assign unique costs to each edge, helping you to debug your implementation.

Varying Costs in Pacman

To understand the motivation for varying costs in the context of Pacman, considermediumDottedMaze and mediumScaryMaze. By changing the cost function, we can encourage Pacman to find different paths. For example, we can charge more for dangerous steps in ghost-ridden areas or less for steps in food-rich areas, and a rational Pacman agent should adjust its behavior in response.

You should now observe successful behavior in all three of the following layouts, where the agents below are all UCS agents that differ only in the cost function they use (the agents and cost functions are written for you):

python pacman.py -l mediumMaze -p SearchAgent -a fn=ucs

python pacman.py -l mediumDottedMaze -p StayEastSearchAgent

python pacman.py -l mediumScaryMaze -p StayWestSearchAgent

Note: You should get very low and very high path costs for the StayEastSearchAgentand StayWestSearchAgent respectively, due to their exponential cost functions (seesearchAgents.py for details).

Question 4: A* (3 points)

Implement A* graph search in the empty function aStarSearch in search.py. A* takes a heuristic function as an argument. Heuristics take two arguments: a state in the search problem (the main argument), and the problem itself (for reference information). The nullHeuristic heuristic function in search.py is a trivial example.

Notice that, unlike the generic search algorithms you have been implementing, heuristics are inherently problem specific. For the graph based search problems in the autograder we have supplied arbitrary heuristic functions which will be given to A* search as arguments. Graph based tests (as well as Pacman tests) can be invoked using

python autograder.py -q q4

Unlike the arbitrary heuristics used in graph based test cases, Pacman heuristics have significance in the context of Pacman. You can test your A* implementation on the original problem of finding a path through a maze to a fixed position using the Manhattan distance heuristic (implemented already as manhattanHeuristic insearchAgents.py).

python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic

You should see that A* finds the optimal solution slightly faster than uniform cost search (about 549 vs. 620 search nodes expanded in our implementation, but ties in priority may make your numbers differ slightly). What happens on openMaze for the various search strategies?

Question 5: Corners (2 points)

Note: Make sure to complete Question 2 before working on Question 5, because Question 5 builds upon your answer for Question 2.
The real power of A* will only be apparent with a more challenging search problem. Like heuristics, search problem implementations are not generic but are (or course) specific to the problem you are solving. Now, it's time to formulate a new problem and design a heuristic for it.

In corner mazes, there are four dots, one in each corner. Our new search problem is to find the shortest path through the maze that touches all four corners (whether the maze actually has food there or not). Note that for some mazes like tinyCorners, the shortest path does not always go to the closest food first! Hint: the shortest path through tinyCorners takes 28 steps.

Implement the CornersProblem search problem in searchAgents.py. You will need to choose a state representation that encodes all the information necessary to detect whether all four corners have been reached.

Since search problem implementations are not generic, there will be no generic graph based tests to help you debug this implementation. However, you can still run the test suite for this problem by invoking

python autograder.py -q q5

Once your search problem is fully implemented, your agent should solve:

python pacman.py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

python pacman.py -l mediumCorners -p SearchAgent -a fn=bfs,prob=CornersProblem

To receive full credit, you need to define an abstract state representation that does notencode irrelevant information (like the position of ghosts, where extra food is, etc.). In particular, do not use a Pacman GameState as a search state. Your code will be very, very slow if you do (and also wrong).

Hint: The only parts of the game state you need to reference in your implementation are the starting Pacman position and the location of the four corners.

Our implementation of breadthFirstSearch expands just under 2000 search nodes on mediumCorners. However, heuristics (used with A* search) can reduce the amount of searching required.

Question 6: Heuristics (3 points)

Note: Make sure to complete Question 4 before working on Question 6, because Question 6 builds upon your answer for Question 4.
Implement a non-trivial, consistent heuristic for the CornersProblem incornersHeuristic.

python pacman.py -l mediumCorners -p AStarCornersAgent -z 0.5
Note: AStarCornersAgent is a shortcut for

python pacman.py -l mediumCorners -p SearchAgent -a fn=aStarSearch,prob=CornersProblem,heuristic=cornersHeuristic -z 0.5.

Admissibility vs. Consistency: Remember, heuristics are just functions that take search states and return numbers that estimate the cost to a nearest goal. More effective heuristics will return values closer to the actual goal costs. To be admissible, the heuristic values must be lower bounds on the actual shortest path cost to the nearest goal (and non-negative). To be consistent, it must additionally hold that if an action has cost c, then taking that action can only cause a drop in heuristic of at most c.

Remember that admissibility isn't enough to guarantee correctness in graph search -- you need the stronger condition of consistency. However, admissible heuristics are usually also consistent, especially if they are derived from problem relaxations. Therefore it is usually easiest to start out by brainstorming admissible heuristics. Once you have an admissible heuristic that works well, you can check whether it is indeed consistent, too. The only way to guarantee consistency is with a proof. However, inconsistency can often be detected by verifying that for each node you expand, its successor nodes are equal or higher in in f-value. Moreover, if UCS and A* ever return paths of different lengths, your heuristic is inconsistent. This stuff is tricky!

Non-Trivial Heuristics: The trivial heuristics are the ones that return zero everywhere (UCS) and the heuristic which computes the true completion cost. The former won't save you any time, while the latter will timeout the autograder. You want a heuristic which reduces total compute time, though for this assignment the autograder will only check node counts (aside from enforcing a reasonable time limit).

Grading: Any non-trivial non-negative consistent heuristic will receive 1 point. Make sure that your heuristic returns 0 at every goal state and never returns a negative value. Depending on how few nodes your heuristic expands, you'll get additional points:

	Number of nodes expanded
	Grade

	more than 1600
	1/3

	at most 1600
	2/3

	at most 1200
	3/3


Remember: If your heuristic is inconsistent, you will receive no credit, so be careful!

Question 7: Eating All The Dots (4 points)

Note: Make sure to complete Question 4 before working on Question 7, because Question 7 builds upon your answer for Question 4.
Now we'll solve a hard search problem: eating all the Pacman food in as few steps as possible. For this, we'll need a new search problem definition which formalizes the food-clearing problem: FoodSearchProblem in searchAgents.py (implemented for you). A solution is defined to be a path that collects all of the food in the Pacman world. For the present project, solutions do not take into account any ghosts or power pellets; solutions only depend on the placement of walls, regular food and Pacman. (Of course ghosts can ruin the execution of a solution! We'll get to that in the next project.) If you have written your general search methods correctly, A* with a null heuristic (equivalent to uniform-cost search) should quickly find an optimal solution to testSearch with no code change on your part (total cost of 7).

python pacman.py -l testSearch -p AStarFoodSearchAgent

Note: AStarFoodSearchAgent is a shortcut for

python pacman.py -l testSearch -p SearchAgent -a fn=astar,prob=FoodSearchProblem,heuristic=foodHeuristic

You should find that UCS starts to slow down even for the seemingly simple tinySearch. As a reference, our implementation takes 2.5 seconds to find a path of length 27 after expanding 5057 search nodes.

Fill in foodHeuristic in searchAgents.py with a consistent heuristic for theFoodSearchProblem. Try your agent on the trickySearch board:

python pacman.py -l trickySearch -p AStarFoodSearchAgent

Our UCS agent finds the optimal solution in about 13 seconds, exploring over 16,000 nodes.

Any non-trivial non-negative consistent heuristic will receive 1 point. Make sure that your heuristic returns 0 at every goal state and never returns a negative value. Depending on how few nodes your heuristic expands, you'll get additional points:

	Number of nodes expanded
	Grade

	more than 15000
	1/4

	at most 15000
	2/4

	at most 12000
	3/4

	at most 9000
	4/4 (full credit; medium)

	at most 7000
	5/4 (optional extra credit; hard)


Remember: If your heuristic is inconsistent, you will receive no credit, so be careful! Can you solve mediumSearch in a short time? If so, we're either very, very impressed, or your heuristic is inconsistent.

Question 8: Replanning (2 points)

Sometimes, even with A* and a good heuristic, finding the optimal path through all the dots is hard. In these cases, we'd still like to find a reasonably good path, quickly. In this section, you'll write an agent that always greedily eats the closest dot.ClosestDotSearchAgent is implemented for you in searchAgents.py, but it's missing a key function that finds a path to the closest dot.

Implement the function findPathToClosestDot in searchAgents.py. Our agent solves this maze (suboptimally!) in under a second with a path cost of 350:

python pacman.py -l bigSearch -p ClosestDotSearchAgent -z .5 

Hint: The quickest way to complete findPathToClosestDot is to fill in theAnyFoodSearchProblem, which is missing its goal test. Then, solve that problem with an appropriate search function. The solution should be very short!

Your ClosestDotSearchAgent won't always find the shortest possible path through the maze. Make sure you understand why and try to come up with a small example where repeatedly going to the closest dot does not result in finding the shortest path for eating all the dots.

Extra Credit (up to 2 points)

Implement an ApproximateSearchAgent in searchAgents.py that finds a short path through the bigSearch layout. If your agent finds a solution of cost at most 290 receive you 1 point extra credit. If the cost is at most 280 you receive 2 points extra credit.

python pacman.py -l bigSearch -p ApproximateSearchAgent -z .5 -q 

We will time your agent using the no graphics option -q, and it must complete in under 30 seconds on our grading machines. Please describe what your agent is doing in a comment! Don't hard-code the path, of course.

Object Glossary
Here's a glossary of the key objects in the code base related to search problems, for your reference:

SearchProblem (search.py)
A SearchProblem is an abstract object that represents the state space, successor function, costs, and goal state of a problem. You will interact with any SearchProblem only through the methods defined at the top of search.py
PositionSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with --- it corresponds to searching for a single pellet in a maze.

CornersProblem (searchAgents.py)
A specific type of SearchProblem that you will define --- it corresponds to searching for a path through all four corners of a maze.

FoodSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with --- it corresponds to searching for a way to eat all the pellets in a maze.

Search Function

A search function is a function which takes an instance of SearchProblem as a parameter, runs some algorithm, and returns a sequence of actions that lead to a goal. Example of search functions are depthFirstSearch andbreadthFirstSearch, which you have to write. You are providedtinyMazeSearch which is a very bad search function that only works correctly ontinyMaze
SearchAgent
SearchAgent is a class which implements an Agent (an object that interacts with the world) and does its planning through a search function. The SearchAgentfirst uses the search function provided to make a plan of actions to take to reach the goal state, and then executes the actions one at a time.

PROJECT 1 SUBMISSION

Having completed Questions 1 through 8 as specified in the project instructions, you must now upload search.py and searchAgents.py. Note that you should select and upload both files simultaneously. On Windows and Linux, this can be accomplished by holding down Ctrl and clicking. On OS X, hold down Cmd instead.

Prior to submitting, be sure you run the autograder on your own machine. Running the autograder locally will help you to debug and expediate your development process. The autograder can be invoked on your own machine using the command:

python autograder.py

Note that running the autograder locally will not register your grades with us. Remember to submit your code below when you want to register your grades for this assignment.

If you receive the extra credit and notice that you have 5/4 points with red X instead of a green check mark, do not be alarmed. This is a consequence of the edX infrastructure. You have received 5/4 points.

