Project O: Unix/Python Tutorial

Introduction

This tutorial will cover the basics of working in the Unix environment for the Berkeley
instructional machines and a small Python tutorial. It assumes you have an EECS
Instructional account for CS 188 and that you know how to access it.

You can download all of the files associated with this tutorial (including this description)
as a zip archive.

Table of Contents

e Unix Basics
e Python Basics
o Invoking the Interpreter
o QOperators
o Strings
o Dir and Help
o Built-in Data Structures

= Lists

= Tuples

= Sets

= Dictionaries
o Writing Scripts
o Indentation
o Writing Functions
o QObject Basics

= Defining Classes

= Using Objects
o Tips and Tricks
o Troubleshooting

e More References

Submission

To get you familiarized with the automatic grading system, we will ask you to submit
answers for problems 1 (buyLotsOfFruit function) and 2 (shopSmart function). This is
a good thing: learning the basics of python now will save you many headaches later in
the course.

This tutorial should be submitted with the name p0 using these submission
instructions.

Please read the submission instructions - they contain important information on how to
submit this and all further assignments.

Unix Basics

Here are basic commands to navigate UNIX and edit files.

File/Directory Manipulation

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 1/14

When you open a terminal window, you're placed at a command prompt.

solar$

The prompt shows your username, the host you are logged onto, and your current
location in the directory structure (your path). The tilde character is shorthand for your
home directory. To make a directory, use the mkdir command. Use cd to change to
that directory:

[cs188-ta@midway ~]$ mkdir tutorial
[cs188-ta@midway ~]$ cd tutorial
[cs188-ta@midway ~/tutoriall$

The Python files used in this tutorial reside in the ~cs188/projects/tutorial
directory. To copy them to your directory, use the cp command. The * is a useful way
to specify multiple files in a given directory; *.py refers to all filenames that end have
the .py ending. Note that . is shorthand for the current directory. Use 1s to see a
listing of the contents of a directory.

[cs1l88-ta@midway ~]$ cp ~csl88/projects/tutorial/*.py .
[cs188-tal@midway ~]1$ 1s

buyLotsOfFruit.py

foreach.py

listcomp.py

listcomp2.py

quickSort.py

shop.py

shopSmart.py

shopTest.py

Some other useful Unix commands:
e rm removes (deletes) a file
e mv moves a file (ie. cut/paste instead of copy/paste)
e man displays documentation for a command
e pwd prints your current path
e xterm opens a new terminal window
e mozilla opens a web browser
e Press "Ctrl-c" to kill a running process
e Append & to a command to run it in the background
e fg brings a program running in the background to the foreground

The Emacs text editor

Emacs is a customizable text editor which has some nice features specifically tailored
for programmers. However, you can use any other text editor that you may prefer
(such as vi, pico, or joe on Unix; or Notepad on Windows; or TextWrangler on Macs;
and many more). To run Emacs, type emacs at a command prompt:

[cs188-tal@midway ~]$ emacs helloWorld.py &
[1] 3262

Here we gave the argument helloWorld.py which will either open that file for editing if
it exists, or create it otherwise. Emacs notices that this is a Python source file
(because of the .py ending) and enters Python-mode, which is supposed to help you
write code. When editing this file you may notice some of that some text becomes
automatically colored: this is syntactic highlighting to help you distinguish items such as
keywords, variables, strings, and comments. Pressing Enter, Tab, or Backspace may
cause the cursor to jump to weird locations: this is because Python is very picky about
indentation, and Emacs is predicting the proper tabbing that you should use.

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 2/14

Some basic Emacs editing commands (c- means "while holding the Ctrl-key"):

e C-x C-s Save the current file

e C-x C-f Open a file, or create a new file it if doesn't exist
e C-k Cut a line, add it to the clipboard

e C-y Paste the contents of the clipboard

e C- Undo

e C-g Abort a half-entered command

You can also copy and paste using just the mouse. Using the left button, select a
region of text to copy. Click the middle button to paste.

There are two ways you can use Emacs to develop Python code. The most
straightforward way is to use it just as a text editor: create and edit Python files in
Emacs; then run Python to test the code somewhere else, like in a terminal window.
Alternatively, you can run Python inside Emacs: see the options under "Python" in the
menubar, or type c-c ! to start a Python interpreter in a split screen. (Use c-x o to
switch between the split screens).

If you want to spend some extra set-up time becoming a power user, you can try an
IDE like Eclipse (Download the Eclipse Classic package at the bottom). Check out PyDev
for Python support in Eclipse. See our eclipse setup instructions for help.

Pyvthon Basics

The programming assignments in this course will be written in Python, an interpreted,
object-oriented language that shares some features with both Java and Scheme. This
tutorial will walk through the primary syntactic constructions in Python, using short
examples.

You may find the Troubleshooting section helpful if you run into problems. It contains a
list of the frequent problems previous CS188 students have encountered when following
this tutorial.

Invoking the Interpeter

Like Scheme, Python can be run in one of two modes. It can either be used
interactively, via an interpeter, or it can be called from the command line to execute a
script. We will first use the Python interpreter interactively.

You invoke the interpreter by entering python at the Unix command prompt.
Note: you may have to type python2.4 or python2.5, rather than python, depending
on your machine.

[cs188-tal@midway ~]$ python
Python 2.5 (r25:51908, Sep 28 2008, 12:45:36)
[GCC 3.4.6] on sunosb

Type "help", "copyright", "credits" or "license" for more information.
>>>
Operators

The Python interpeter can be used to evaluate expressions, for example simple
arithmetic expressions. If you enter such expressions at the prompt (>>>) they will be
evaluated and the result wil be returned on the next line.

>>> 1 4+ 1
2
>>> 2 * 3

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 3/14

Boolean operators also exist in Python to manipulate the primitive True and False
values.

>>> 1==

False

>>> not (1==0)

True

>>> (2==2) and (2==3)
False

>>> (2==2) or (2==3)
True

Strings

Like Java, Python has a built in string type. The + operator is overloaded to do string
concatenation on string values.

>>> 'artificial' + "intelligence"
'artificialintelligence'

There are many built-in methods which allow you to manipulate strings.

>>> 'artificial'.upper/()
'"ARTIFICIAL'

>>> '"HELP'.lower ()
'help'

>>> len ('Help'")

4

Notice that we can use either single quotes ' ' or double quotes " " to surround
string. This allows for easy nesting of strings.

We can also store expressions into variables.

>>> s = 'hello world'
>>> print s

hello world

>>> s.upper ()
'"HELLO WORLD'

>>> len (s.upper())
11

>>> num = 8.0

>>> num += 2.5
>>> print num
10.5

In Python, you do not have declare variables before you assign to them.

Exercise: Learn about the methods Python provides for strings.

To see what methods Python provides for a datatype, use the dir and help
commands:

>>> s = 'abc'

>>> dir (s)

[' add ', ' class_ ', ' contains_ ', ' delattr ', ' doc_ ',
' eq ', ' ge ', ' getattribute ', ' getitem ', ' getnewargs ',
' getslice ', ' gt ', ' hash ', ' dinit ',' le ', ' len ',

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 4/14

' 1t ', ' mod ', ' mul ', ' ne ', ' mnew ', ' reduce ',

' reduce ex ',' repr ', ' rmod ', ' rmul ', ' setattr ',

' str ', 'capitalize', 'center', 'count', 'decode', 'encode',
'endswith', 'expandtabs', 'find', 'index', 'isalnum', 'isalpha',
'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust',
'"lower', 'lstrip', 'replace', 'rfind', 'rindex', 'rjust', 'rsplit',
'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase',
'title', 'translate', 'upper', 'zfill']

>>> help(s.find)

Help on built-in function find:

find(...)
S.find(sub [,start [,end]]) -> int

Return the lowest index in S where substring sub is found,
such that sub is contained within s[start,end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

>> s.find('b")
1

Try out some of the string functions listed in dir (ignore those with underscores
around the method name).

Built-in Data Structures

Python comes equipped with some useful built-in data structures, broadly similar to
Java's collections package.

Lists

Lists store a sequence of mutable items:

>>> fruits = ['apple', 'orange', 'pear', '"banana']
>>> fruits[0]
'apple'

We can use the + operator to do list concatenation:

>>> otherFruits = ['kiwi', 'strawberry']
>>> fruits + otherFruits
>>> ['apple', 'orange', 'pear', 'banana', 'kiwi', 'strawberry']

Python also allows negative-indexing from the back of the list. For instance,
fruits[-1] will access the last element 'banana’':

>>> fruits[-2]

'pear’!

>>> fruits.pop ()

'banana’

>>> fruits

['apple', 'orange', 'pear']

>>> fruits.append('grapefruit')

>>> fruits

["apple', 'orange', 'pear', 'grapefruit']

>>> fruits[-1] = 'pineapple'
www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 5/14

>>> fruits
['"apple', 'orange', 'pear', 'pineapple']

We can also index multiple adjacent elements using the slice operator. For instance
fruits[1:3] which returns a list containing the elements at position 1 and 2. In
general fruits[start:stop] will get the elements in start, start+l, ..., stop-1.
We can also do fruits[start:] which returns all elements starting from the start
index. Also fruits[:end] will return all elements before the element at position end:

>>> fruits[0:2]

['apple', 'orange']

>>> fruits[:3]

['apple', 'orange', 'pear']
>>> fruits[2:]

['pear', 'pineapple']

>>> len (fruits)

4

The items stored in lists can be any Python data type. So for instance we can have
lists of lists:

>>> 1stOfLsts = [['a','b','c"'],[1,2,3],['one', "two', "three']]
>>> 1stOfLsts[1][2]

3

>>> 1stOfLsts[0] .pop ()

ICI

>>> 1stOfLsts

[['a', 'b'],[1, 2, 3]1,['one', 'two', 'three'l]

Exercise: Play with some of the list functions. You can find the methods you can call
on an object via the dir and get information about them via the help command:

>>> dir (list)

[' add ', ' «class ', ' contains ', ' delattr ', ' delitem ',
' delslice ', ' doc_ ', ' eq ', ' ge ', ' getattribute ',

' getitem ', ' getslice ', ' gt ', ' hash ', ' iadd ',

' dimul ',

' dipnit ', ' iter ', ' le ', ' len ', ' 1t ', ' mul ',

' ne ',

' new ', ' reduce ', ' reduce ex ', ' repr ', ' reversed ',
' rmul ', ' setattr ', ' setitem ', ' setslice ', ' str ',

'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse',
'sort']

>>> help(list.reverse)
Help on built-in function reverse:

reverse(...)
L.reverse () -- reverse *IN PLACE~*

>>> 1st = ['a','b','c"]

>>> lst.reverse ()
>>> [lcl,lb',lal]

Note: Ignore functions with underscores "_" around the names; these are private helper
methods.

Tuples

A data structure similar to the list is the tuple, which is like a list except that it is

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 6/14

immutable once it is created (i.e. you cannot change its content once created). Note
that tuples are surrounded with parentheses while lists have square brackets.

>>> pair = (3,5)

>>> pair[0]

3

>>> x,y = pair

>>> X

3

>>> y

5

>>> pair[l] = 6

TypeError: object does not support item assignment

The attempt to modify an immutable structure raised an exception. Exceptions indicate
errors: index out of bounds errors, type errors, and so on will all report exceptions in
this way.

Sets

A set is another data structure that serves as an unordered list with no duplicate items.
Below, we show how to create a set, add things to the set, test if an item s in the set,
and perform common set operations (difference, intersection, union):

>>> shapes = ['circle', 'square', '"triangle', 'circle']
>>> setOfShapes = set (shapes)

>>> setOfShapes

set (['circle', 'square', 'triangle'])

>>> setOfShapes.add('polygon')

>>> setOfShapes
set(['circle', 'square', 'triangle', 'polygon'])

>>> 'circle' in setOfShapes

True

>>> 'rhombus' in setOfShapes

False

>>> favoriteShapes = ['circle', 'triangle', "hexagon']
>>> setOfFavoriteShapes = set (favoriteShapes)

>>> setOfShapes - setOfFavoriteShapes

set (['square', 'polyon'])

>>> setOfShapes & setOfFavoriteShapes

set(['circle', 'triangle'])

>>> setOfShapes | setOfFavoriteShapes

set (['circle', 'square', 'triangle', 'polygon', '"hexagon'])

Note that the objects in the set are unordered; you cannot assume that their
traversal or print order will be the same across machines!

Dictionaries

The last built-in data structure is the dictionary which stores a map from one type of
object (the key) to another (the value). The key must be an immutable type (string,
number, or tuple). The value can be any Python data type.

Note: In the example below, the printed order of the keys returned by Python could be
different than shown below. The reason is that unlike lists which have a fixed ordering,
a dictionary is simply a hash table for which there is no fixed ordering of the keys (see
the FAQ about dictionary key ordering).

>>> studentIds = {'knuth': 42.0, 'turing': 56.0, 'nash': 92.0 }
>>> studentIds['turing']

56.0

>>> studentIds|['nash'] = 'ninety-two'

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html

7/14

>>> studentIds

{"knuth': 42.0, 'turing': 56.0, 'nash': 'ninety-two'}
>>> del studentIds|['knuth']

>>> studentIds

{'"turing': 56.0, 'nash': 'ninety-two'}

>>> studentIds|['knuth'] = [42.0, "forty-two']

>>> studentIds

{"knuth': [42.0, 'forty-two'], 'turing': 56.0, 'nash': 'ninety-two'}

>>> studentIds.keys ()

["knuth', 'turing', 'nash']

>>> studentIds.values ()

[[42.0, 'forty-two'], 56.0, 'ninety-two']

>>> studentIds.items ()

[("knuth', [42.0, 'forty-two']), ('turing',56.0), ('nash', 'ninety-two')]
>>> len (studentIds)

3

As with nested lists, you can also create dictionaries of dictionaries.

Exercise: Use dir and help to learn about the functions you can call on dictionaries.

Writing Scripts

Now that you've got a handle on using Python interactively, let's write a simple Python
script that demonstrates Python's for loop. Open the file called foreach.py and
update it with the following code:

This is what a comment looks like
fruits = ['apples', 'oranges', 'pears', 'bananas']
for fruit in fruits:

print fruit + ' for sale'

fruitPrices = {'apples': 2.00, 'oranges': 1.50, 'pears': 1.75}
for fruit, price in fruitPrices.items():
if price < 2.00:
print '%s cost %f a pound' $ (fruit, price)
else:

print fruit + ' are too expensive!'

At the command line, use the following command in the directory containing
foreach.py:

[cs1l88-tf@solar ~/tutoriall$ python foreach.py
apples for sale

oranges for sale

pears for sale

bananas for sale

oranges cost 1.500000 a pound

pears cost 1.750000 a pound

apples are too expensive!

Remember that the print statements listing the costs may be in a different order on
your screen than in this tutorial; that's due to the fact that we're looping over
dictionary keys, which are unordered. To learn more about control structures (e.g., if
and else) in Python, check out the official Python tutorial section on this topic.

If you like functional programming (like Scheme) you might also like map and filter:
>>> map (lambda x: x * x, [1,2,3])

(1, 4, 9]

>>> filter(lambda x: x > 3, [1,2,3,4,5,4,3,2,1])

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 8/14

You can learn more about 1ambda if you're interested. The next snippet of code
demonstrates python's list comprehension construction:

nums = [1,2,3,4,5,6]

plusOneNums = [x+1 for x in nums]

oddNums = [x for x in nums 1if x % 2 == 1]

print oddNums

oddNumsPlusOne = [x+1 for x in nums 1if x % 2 ==1]

print oddNumsPlusOne

This code is in a file called 1listcomp.py, which you can run:

[csl88-ta@midway ~]$ python listcomp.py
[1,3,5]
[2,4,0]

Those of you familiar with Scheme, will recognize that the list comprehension is similar
to the map function. In Scheme, the first list comprehension would be written as:

(define nums '(1,2,3,4,5,0))
(map
(lambda (x) (+ x 1)) nums)

Exercise: Write a list comprehension which, from a list, generates a lowercased version
of each string that has length greater than five. Solution: listcomp2.py

Beware of Indendation!

Unlike many other languages, Python uses the indentation in the source code for
interpretation. So for instance, for the following script:

if 0 ==
print 'We are in a world of arithmetic pain'
print 'Thank you for playing'

will output
Thank you for playing

But if we had written the script as

if 0 == 1:
print 'We are in a world of arithmetic pain'’
print 'Thank you for playing'

there would be no output. The moral of the story: be careful how you indent! It's best
to use four spaces for indentation -- that's what the course code uses.

Writing Functions

As in Scheme or Java, in Python you can define your own functions:

fruitPrices = {'apples':2.00, 'oranges': 1.50, 'pears': 1.75}

def buyFruit (fruit, numPounds) :
if fruit not in fruitPrices:
print "Sorry we don't have %s" % (fruit)
else:
cost = fruitPrices[fruit] * numPounds
print "That'll be $f please" % (cost)

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 9/14

Main Function

] T .

if name == "' main
buyFruit ('apples',2.4)

buyFruit ('coconuts', 2)

Rather than having a main function as in Java, the name == ' main ' checkis
used to delimit expressions which are executed when the file is called as a script from
the command line. The code after the main check is thus the same sort of code you

would put in a main function in Java.
Save this script as fruit.py and run it:

[csl88-tal@midway ~]$ python fruit.py
That'll be 4.800000 please
Sorry we don't have coconuts

Problem 1 (for submission): Add a buyLotsOfFruit (orderList) function to
buylLotsOfFruit.py Which takes a list of (fruit, pound) tuples and returns the cost
of your list. If there is some fruit in the list which doesn't appear in fruitpPrices it
should print an error message and return None (which is like nil in Scheme). Please do
not change the fruitPrices variable.

Test Case:We will check your code by testing that the script correctly outputs

Cost of [('apples', 2.0), ('pears', 3.0), ('limes', 4.0)] is 12.25

Advanced Exercise: Write a quickSort function in Python using list comprehensions.
Use the first element as the pivot. Solution: gquickSort.py

Object Basics

Although this isn't a class in object-oriented programming, you'll have to use some
objects in the programming projects, and so it's worth covering the basics of objects in
Python. An object encapsulates data and provides functions for interacting with that
data.

Defining Classes

Here's an example of defining a class named FruitShop:

class FruitShop:

def init (self, name, fruitPrices):

wwn

name: Name of the fruit shop

fruitPrices: Dictionary with keys as fruit
strings and prices for values e.g.
{'apples':2.00, 'oranges': 1.50, 'pears': 1.75}

wnn

self.fruitPrices = fruitPrices

self.name = name

print 'Welcome to the %s fruit shop' % (name)

def getCostPerPound(self, fruit):
mwan
fruit: Fruit string
Returns cost of 'fruit', assuming 'fruit'
is in our inventory or None otherwise
mwan
if fruit not in self.fruitPrices:
print "Sorry we don't have %s" % (fruit)

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html

10/14

return None
return self.fruitPrices[fruit]

def getPriceOfOrder (self, orderList):

wwn

orderList: List of (fruit, numPounds) tuples

Returns cost of orderList. If any of the fruit are

wwn

totalCost = 0.0
for fruit, numPounds in orderList:
costPerPound = self.getCostPerPound (fruit)
if costPerPound != None:
totalCost += numPounds * costPerPound
return totalCost

def getName (self):
return self.name

The FruitShop class has some data, the name of the shop and the prices per pound of
some fruit, and it provides functions, or methods, on this data. What advantage is
there to wrapping this data in a class?

1. Encapsulating the data prevents it from being altered or used inappropriately,
2. The abstraction that objects provide make it easier to write general-purpose code.

Using Objects

So how do we make an object and use it? Download the FruitShop implementation in

shop.py. We then import the code from this file (making it accessible to other scripts)
using import shop, since shop.py is the name of the file. Then, we can create

FruitShop objects as follows:
import shop

shopName = 'the Berkeley Bowl'

fruitPrices = {'apples': 1.00, 'oranges': 1.50, 'pears': 1.75}
berkeleyShop = shop.FruitShop (shopName, fruitPrices)
applePrice = berkeleyShop.getCostPerPound ('apples')

print applePrice

print ('Apples cost $%.2f at %s.' % (applePrice, shopName))

otherName = 'the Stanford Mall'

otherFruitPrices = {'kiwis':6.00, 'apples': 4.50, 'peaches': 8.75}
otherFruitShop = shop.FruitShop (otherName, otherFruitPrices)
otherPrice = otherFruitShop.getCostPerPound('apples')

print otherPrice

print ('Apples cost $%.2f at %s.' % (otherPrice, otherName))

print ("My, that's expensive!™)

You can download this code in shopTest.py and run it like this:

[cs188-tal@midway ~]$ python shopTest.py
Welcome to the Berkeley Bowl fruit shop
1.0

Apples cost $1.00 at the Berkeley Bowl.
Welcome to the Stanford Mall fruit shop
4.5

Apples cost $4.50 at the Stanford Mall.
My, that's expensive!

So what just happended? The import shop statement told Python to load all of the

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html

11/14

functions and classes in shop.py. The line berkeleyShop =

shop.FruitShop (shopName, fruitPrices) constructs an instance of the FruitShop
class defined in shop.py, by calling the init function in that class. Note that we
only passed two arguments in, while init seems to take three arguments: (self,
name, fruitPrices). The reason for this is that all methods in a class have self as
the first argument. The self variable's value is automatically set to the object itself;
when calling a method, you only supply the remaining arguments. The self variable
contains all the data (name and fruitpPrices) for the current specific instance (similar
to this in Java). The print statements use the substitution operator (described in the
Python docs if you're curious).

Static vs Instance Variables

The following example with illustrate how to use static and instance variables in python.

Create the person class.py containing the following code:

class Person:
population = 0
def init (self, myAge):
self.age = myAge
Person.population += 1
def get population(self):
return Person.population
def get age(self):
return self.age

We first compile the script:

[cs188-ta@midway ~]$ python person_class.py
Now use the class as follows:

>>> import person class

>>> pl = person_ class.Person(12)
>>> pl.get population ()

1

>>> p2 = person_ class.Person(63)
>>> pl.get population ()

2

>>> p2.get population ()

2

>>> pl.get age ()

12

>>> p2.get age()

63

In the code above, age is an instance variable and population is a static variable.
population is shared by all instances of the person class whereas each instance has
its own age variable.

Problem 2 (for submission): Fill in the function shopSmart (orders, shops) in
shopSmart.py, which takes an orderList (like the kind passed in to
FruitShop.getPriceOfOrder) and a list of FruitShop and returns the FruitShop

where your order costs the least amount in total. Don't change the file name or variable

names, please. Note that we will provide the shop.py implementation as a "support”
file, so you don't need to submit yours.

Test Case:We will check that, with the following variable definitions:

ordersl = [('apples',1.0), ('oranges',3.0)]
orders?2 = [('apples',3.0)]

dirl = {'apples': 2.0, 'oranges':1.0}

shopl = shop.FruitShop('shopl',dirl)

dir2 = {'apples': 1.0, 'oranges': 5.0}

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html

12/14

shop2 = shop.FruitShop('shop2',dir?2)
shops [shopl, shop2]

The following are true:

shopSmart.shopSmart (ordersl, shops).getName() == 'shopl'
and
shopSmart.shopSmart (orders2, shops).getName() == 'shop2'

More Python Tips and Tricks

This tutorial has briefly touched on some major aspects of Python that will be relevant
to the course. Here's some more useful tidbits:
e Use range to generate a sequence of integers, useful for generating traditional
indexed for loops:

for index in range (3):
print lst[index]

e After importing a file, if you edit a source file, the changes will not be immediately
propagated in the interpreter. For this, use the reload command:

>>> reload (shop)

Troubleshooting

These are some problems (and their solutions) that new python learners commonly
encounter.
e Problem:
ImportError: No module named py

Solution:

When using import, do not include the ".py" from the filename.
For example, you should say: import shop

NOT: import shop.py

e Problem:
NameError: name 'MY VARIABLE' is not defined
Even after importing you may see this.

Solution:

To access a member of a module, you have to type MODULE NAME.MEMBER NAME,
where MODULE NAME is the name of the .py file, and MEMBER NAME is the name of
the variable (or function) you are trying to access.

e Problem:
TypeError: 'dict' object is not callable

Solution:
Dictionary looks up are done using square brackets: [and]. NOT parenthesis: (
and).

e Problem:
ValueError: too many values to unpack

Solution:
Make sure the number of variables you are assigning in a for loop matches the
number of elements in each item of the list. Similarly for working with tuples.

For example, if pair is a tuple of two elements (e.g. pair =('apple', 2.0)) then

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html 13/14

the following code would cause the "too many values to unpack error":
(a,b,c) = pair

Here is a problematic scenario involving a for loop:

pairList = [('apples', 2.00), ('oranges', 1.50), ('pears',

for fruit, price, color in pairList:

[¢)

print '$s fruit costs %$f and is the color %s' % (fruit,

e Problem:
AttributeError: 'list' object has no attribute 'length' (or something similar)

Solution:
Finding length of lists is done using len (NAME OF LIST).

e Problem:
Changes to a file are not taking effect.

Solution:

1. Make sure you are saving all your files after any changes.

1.75)1]

price, color)

2. If you are editing a file in a window different from the one you are using to
execute python, make sure you reload (YOUR MODULE) to guarantee your

changes are being reflected. reload works similar to import.

More References!

e The place to go for more Python information: www.python.org

e A good reference book: Learning Python (From the UCB campus, you can read the

whole book online)

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tutorial/tutorial.html

14/14

