
3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

Project 4: Ghostbusters

I can hear you, ghost.
Running won't save you from my

Particle filter!

Introduction

Pac-Man spends his life running from ghosts, but things were not always so. Legend
has it that many years ago, Pac-Man's great grandfather Grandpac learned to hunt
ghosts for sport. However, he was blinded by his power and could only track ghosts
by their banging and clanging.

In this project, you will design Pac-Man agents that use sensors to locate and eat
invisible ghosts. You'll advance from locating single, stationary ghosts to hunting
packs of multiple moving ghosts with ruthless efficiency.

The code for this project contains the following files, available as a zip archive.

Files you will edit

bustersAgents.py
Agents for playing the Ghostbusters variant of
Pac-Man.

inference.py
Code for tracking ghosts over time using their
sounds.

Files you will not edit

busters.py
The main entry to Ghostbusters (replacing
pacman.py)

bustersGhostAgents.py

3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

New ghost agents for Ghostbusters

distanceCalculator.py Computes maze distances

game.py
Inner workings and helper classes for Pac-
Man

ghostAgents.py Agents to control ghosts

graphicsDisplay.py Graphics for Pac-Man

graphicsUtils.py Support for Pac-Man graphics

keyboardAgents.py Keyboard interfaces to control Pac-Man

layout.py
Code for reading layout files and storing
their contents

util.py Utility functions

What to submit: You will fill in portions of bustersAgents.py and inference.py
during the assignment. You should submit this file with your code and comments.
Please do not change the other files in this distribution or submit any of our original
files other than inference.py and bustersAgents.py. Directions for submitting are
on the course website; this assignment is submitted with the command submit p4.

Evaluation: Your code will be autograded for technical correctness. Please do not
change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder. However, the correctness of your implementation --
not the autograder's judgements -- will be the final judge of your score. If necessary,
we will review and grade assignments individually to ensure that you receive due
credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in
the class for logical redundancy. If you copy someone else's code and submit it with
minor changes, we will know. These cheat detectors are quite hard to fool, so please
don't try. We trust you all to submit your own work only; please don't let us down. If
you do, we will pursue the strongest consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the
course staff for help. Office hours, section, and the newsgroup are there for your
support; please use them. If you can't make our office hours, let us know and we will
schedule more. We want these projects to be rewarding and instructional, not
frustrating and demoralizing. But, we don't know when or how to help unless you ask.

Ghostbusters and BNs

In the cs188 version of Ghostbusters, the goal is to hunt down scared but invisible
ghosts. Pac-Man, ever resourceful, is equipped with sonar (ears) that provides noisy
readings of the Manhattan distance to each ghost. The game ends when pacman has
eaten all the ghosts. To start, try playing a game yourself using the keyboard.

 python busters.py

The blocks of color indicate where the each ghost could possibly be, given the noisy
distance readings provided to Pac-Man. The noisy distances at the bottom of the

3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

display are always non-negative, and always within 7 of the true distance. The
probability of a distance reading decreases exponentially with its difference from the
true distance.

Your primary task in this project is to implement inference to track the ghosts. A
crude form of inference is implemented for you by default: all squares in which a ghost
could possibly be are shaded by the color of the ghost. Option -s shows where the
ghost actually is.

 python busters.py -s -k 1

Naturally, we want a better estimate of the ghost's position. We will start by locating
a single, stationary ghost using multiple noisy distance readings. The default
BustersKeyboardAgent in bustersAgents.py uses the ExactInference module in
inference.py to track ghosts.

Question 1 (3 points) Update the observe method in ExactInference class of
inference.py to correctly update the agent's belief distribution over ghost positions.
When complete, you should be able to accurately locate a ghost by circling it.

 python busters.py -s -k 1 -g StationaryGhost

Because the default RandomGhost ghost agents move independently of one another,
you can track each one separately. The default BustersKeyboardAgent is set up to
do this for you. Hence, you should be able to locate multiple stationary ghosts
simultaneously. Encircling the ghosts should give you precise distributions over the
ghosts' locations.

 python busters.py -s -g StationaryGhost

Note: your busters agents have a separate inference module for each ghost they are
tracking. That's why if you print an observation inside the observe function, you'll
only see a single number even though there may be multiple ghosts on the board.

Hints:

You are implementing the online belief update for observing new evidence. Before
any readings, pacman believes the ghost could be anywhere: a uniform prior (see
initializeUniformly. After receiving a reading, the observe function is called,

which must update the belief at every position.

Before typing any code, write down the equation of the inference problem you are
trying to solve.

Try printing noisyDistance, emissionModel, and pacmanPosition (in the

observe function) to get started.

In the Pac-Man display, high posterior beliefs are represented by bright colors,
while low beliefs are represented by dim colors. You should start with a large
cloud of belief that shrinks over time as more evidence accumulates.

Beliefs are stored as util.Counter objects (like dictionaries) in a field called

self.beliefs, which you should update.

You should not need to store any evidence. The only thing you need to store in
ExactInference is self.beliefs.

Ghosts don't hold still forever. Fortunately, your agent has access to the action
distribution for any GhostAgent. Your next task is to use the ghost's move distribution
to update your agent's beliefs when time elapses.

Question 2 (4 points) Fill in the elapseTime method in ExactInference to correctly
update the agent's belief distribution over the ghost's position when the ghost moves.
When complete, you should be able to accurately locate moving ghosts, but some
uncertainty will always remain about a ghost's position as it moves.

3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

 python busters.py -s -k 1

 python busters.py -s -k 1 -g DirectionalGhost

Hints:

Instructions for obtaining a distribution over where a ghost will go next, given its
current position and the gameState, appears in the comments of

ExactInference.elapseTime in inference.py.

A DirectionalGhost is easier to track because it is more predictable. After

running away from one for a while, your agent should have a good idea where it
is.

We assume that ghosts still move independently of one another, so while you can
develop all of your code for one ghost at a time, adding multiple ghosts should still
work correctly.

Now that Pac-Man can track ghosts, try playing without peeking at the ghost
locations. Beliefs about each ghost will be overlaid on the screen. The game should be
challenging, but not impossible.

 python busters.py -l bigHunt

Now, pacman is ready to hunt down ghosts on his own. You will implement a simple
greedy hunting strategy, where Pac-Man assumes that each ghost is in its most likely
position according to its beliefs, then moves toward the closest ghost.

Question 3 (4 points) Implement the chooseAction method in GreedyBustersAgent
in bustersAgents.py. Your agent should first find the most likely position of each
remaining (uncaptured) ghost, then choose an action that minimizes the distance to
the closest ghost. If correctly implemented, your agent should win smallHunt with a
score greater than 700 at least 8 out of 10 times.

 python busters.py -p GreedyBustersAgent -l smallHunt

Hints:

When correctly implemented, your agent will thrash around a bit in order to
capture a ghost.

The comments of chooseAction provide you with useful method calls for

computing maze distance and successor positions.

Make sure to only consider the living ghosts, as described in the comments.

Approximate Inference

Approximate inference is very trendy among ghost hunters this season. Next, you will
implement a particle filtering algorithm for tracking a single ghost.

Question 4 (5 points) Implement all necessary methods for the ParticleFilter
class in inference.py. When complete, you should be able to track ghosts nearly as
effectively as with exact inference. This means that your agent should win oneHunt
with a score greater than 100 at least 8 out of 10 times.

 python busters.py -k 1 -s -a inference=ParticleFilter

Hints:

A particle (sample) is a ghost position in this inference problem.

3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

The belief cloud generated by a particle filter will look noisy compared to the one
for exact inference.

To debug, you may want to start with -g StationaryGhost.

So far, we have tracked each ghost independently, which works fine for the default
RandomGhost or more advanced DirectionalGhost. However, the prized
DispersingGhost chooses actions that avoid other ghosts. Since the ghosts'
transition models are no longer independent, all ghosts must be tracked jointly in a
dynamic Bayes net!

Since the ghosts move in sequence, the Bayes net has the following structure, where
the hidden variables G represent ghost positions and the emission variables are the
noisy distances to each ghost. This structure can be extended to more ghosts, but
only two are shown below.

You will now implement a particle filter that tracks multiple ghosts simultaneously.
Each particle will represent a tuple of ghost positions that is a sample of where all the
ghosts are at the present time. The code is already set up to extract marginal
distributions about each ghost from the joint inference algorithm you will create, so
that belief clouds about individual ghosts can be displayed.

Question 5 (3 points) Complete the elapseTime method in JointParticleFilter in
inference.py to resample each particle correctly for the Bayes net. The comments in
the method provide instructions for helpful support functions. With only this part of
the particle filter completed, you should be able to predict that ghosts will flee to the
perimeter of the layout to avoid each other, though you won't know which ghost is in
which corner (see image).

 python busters.py -s -a inference=MarginalInference -g DispersingGhost

3/8/13 Project 4: Ghostbusters

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/tracking/busters.html

Question 6 (6 points) Complete the observeState method in JointParticleFilter
to weight and resample the whole list of particles based on new evidence. A correct
implementation should also handle two special cases: (1) when all your particles
receive zero weight based on the evidence, you should resample all particles from the
prior to recover. (2) when a ghost is eaten, you should update all particles to place
that ghost in its prison cell, as described in the comments of observeState. You
should now effectively track dispersing ghosts. If correctly implemented, your agent
should win oneHunt with a 10-game average score greater than 480.

 python busters.py -s -k 3 -a inference=MarginalInference -g DispersingGhost

Congratulations! Only one more project left.

