
3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

Project 2: Multi-Agent Pac-Man

Pac-Man, now with ghosts.
Minimax, Expectimax,

Evaluation.

Introduction

In this project, you will design agents for the classic version of Pac-Man, including
ghosts. Along the way, you will implement both minimax and expectimax search and
try your hand at evaluation function design.

The code base has not changed much from the previous project, but please start with
a fresh installation, rather than intermingling files from project 1. You can, however,
use your search.py and searchAgents.py in any way you want.

The code for this project contains the following files, available as a zip archive.

Key file s to read

multiAgents.py Where all of your multi-agent search agents will reside.

pacman.py
The main file that runs Pac-Man games. This file also describes
a Pac-Man GameState type, which you will use extensively in

this project

game.py
The logic behind how the Pac-Man world works. This file
describes several supporting types like AgentState, Agent,
Direction, and Grid.

util.py Useful data structures for implementing search algorithms.

File s you can ignore

graphicsDisplay.py Graphics for Pac-Man

graphicsUtils.py Support for Pac-Man graphics

3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

textDisplay.py ASCII graphics for Pac-Man

ghostAgents.py Agents to control ghosts

keyboardAgents.py Keyboard interfaces to control Pac-Man

layout.py Code for reading layout files and storing their contents

What to submit: You will fill in portions of multiAgents.py during the assignment.
You should submit this file with your code and comments. You may also submit
supporting files (like search.py, etc.) that you use in your code. Please do not
change the other files in this distribution or submit any of our original files other than
multiAgents.py. Directions for submitting are on the course website; this assignment
is submitted with the command submit p2.

Evaluation: Your code will be autograded for technical correctness. Please do not
change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder. However, the correctness of your implementation --
not the autograder's judgements -- will be the final judge of your score. If necessary,
we will review and grade assignments individually to ensure that you receive due
credit for your work.

Academic Dishonesty: We will be checking your code against other submissions in
the class for logical redundancy. If you copy someone else's code and submit it with
minor changes, we will know. These cheat detectors are quite hard to fool, so please
don't try. We trust you all to submit your own work only; please don't let us down. If
you do, we will pursue the strongest consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the
course staff for help. Office hours, section, and the newsgroup are there for your
support; please use them. If you can't make our office hours, let us know and we will
schedule more. We want these projects to be rewarding and instructional, not
frustrating and demoralizing. But, we don't know when or how to help unless you ask.

Newsgroup: Post your questions (but not project solutions) on the newsgroup.
Please be careful not to post spoilers to the newsgroup.

Multi-Agent Pac-Man

First, play a game of classic Pac-Man:

python pacman.py

Now, run the provided ReflexAgent in multiAgents.py:

python pacman.py -p ReflexAgent

Note that it plays quite poorly even on simple layouts:

python pacman.py -p ReflexAgent -l testClassic

Inspect its code (in multiAgents.py) and make sure you understand what it's doing.

Question 1 (3 points) Improve the ReflexAgent in multiAgents.py to play
respectably. The provided reflex agent code provides some helpful examples of

3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

methods that query the GameState for information. A capable reflex agent will have to
consider both food locations and ghost locations to perform well. Your agent should
easily and reliably clear the testClassic layout:

python pacman.py -p ReflexAgent -l testClassic

Try out your reflex agent on the default mediumClassic layout with one ghost or two

(and animation off to speed up the display):

python pacman.py --frameTime 0 -p ReflexAgent -k 1

python pacman.py --frameTime 0 -p ReflexAgent -k 2

How does your agent fare? It will likely often die with 2 ghosts on the default board,
unless your evaluation function is quite good.

Note: you can never have more ghosts than the layout permits.

Note: As features, try the reciprocal of important values (such as distance to food)
rather than just the values themselves.

Note: The evaluation function you're writing is evaluating state-action pairs; in later
parts of the project, you'll be evaluating states.

Options: Default ghosts are random; you can also play for fun with slightly smarter
directional ghosts using -g DirectionalGhost. If the randomness is preventing you
from telling whether your agent is improving, you can use -f to run with a fixed
random seed (same random choices every game). You can also play multiple games in
a row with -n. Turn off graphics with -q to run lots of games quickly.

The autograder will check that your agent can rapidly clear the openClassic layout
ten times without dying more than twice or thrashing around infinitely (i.e. repeatedly
moving back and forth between two positions, making no progress).

python pacman.py -p ReflexAgent -l openClassic -n 10 -q

Don't spend too much time on this question, though, as the meat of the project lies
ahead.

Question 2 (5 points) Now you will write an adversarial search agent in the provided
MinimaxAgent class stub in multiAgents.py. Your minimax agent should work with
any number of ghosts, so you'll have to write an algorithm that is slightly more general
than what appears in the textbook. In particular, your minimax tree will have multiple
min layers (one for each ghost) for every max layer.

Your code should also expand the game tree to an arbitrary depth. Score the leaves
of your minimax tree with the supplied self.evaluationFunction, which defaults to
scoreEvaluationFunction. MinimaxAgent extends MultiAgentAgent, which gives
access to self.depth and self.evaluationFunction. Make sure your minimax code
makes reference to these two variables where appropriate as these variables are
populated in response to command line options.

Important: A single search ply is considered to be one Pac-Man move and all the
ghosts' responses, so depth 2 search will involve Pac-Man and each ghost moving two
times.

Hints and Observations

The evaluation function in this part is already written
(self.evaluationFunction). You shouldn't change this function, but recognize

3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

that now we're evaluating *states* rather than actions, as we were for the reflex
agent. Look-ahead agents evaluate future states whereas reflex agents evaluate
actions from the current state.

The minimax values of the initial state in the minimaxClassic layout are 9, 8, 7,

-492 for depths 1, 2, 3 and 4 respectively. Note that your minimax agent will
often win (665/1000 games for us) despite the dire prediction of depth 4 minimax.

python pacman.py -p MinimaxAgent -l minimaxClassic -a depth=4

To increase the search depth achievable by your agent, remove the
Directions.STOP action from Pac-Man's list of possible actions. Depth 2 should

be pretty quick, but depth 3 or 4 will be slow. Don't worry, the next question will
speed up the search somewhat.

Pac-Man is always agent 0, and the agents move in order of increasing agent
index.

All states in minimax should be GameStates, either passed in to getAction or

generated via GameState.generateSuccessor. In this project, you will not be

abstracting to simplified states.

On larger boards such as openClassic and mediumClassic (the default), you'll

find Pac-Man to be good at not dying, but quite bad at winning. He'll often thrash
around without making progress. He might even thrash around right next to a dot
without eating it because he doesn't know where he'd go after eating that dot.
Don't worry if you see this behavior, question 5 will clean up all of these issues.

When Pac-Man believes that his death is unavoidable, he will try to end the game
as soon as possible because of the constant penalty for living. Sometimes, this is
the wrong thing to do with random ghosts, but minimax agents always assume the
worst:

python pacman.py -p MinimaxAgent -l trappedClassic -a depth=3

Make sure you understand why Pac-Man rushes the closest ghost in this case.

Question 3 (3 points) Make a new agent that uses alpha-beta pruning to more
efficiently explore the minimax tree, in AlphaBetaAgent. Again, your algorithm will be
slightly more general than the pseudo-code in the textbook, so part of the challenge
is to extend the alpha-beta pruning logic appropriately to multiple minimizer agents.

You should see a speed-up (perhaps depth 3 alpha-beta will run as fast as depth 2
minimax). Ideally, depth 3 on smallClassic should run in just a few seconds per
move or faster.

python pacman.py -p AlphaBetaAgent -a depth=3 -l smallClassic

The AlphaBetaAgent minimax values should be identical to the MinimaxAgent minimax
values, although the actions it selects can vary because of different tie-breaking
behavior. Again, the minimax values of the initial state in the minimaxClassic layout
are 9, 8, 7 and -492 for depths 1, 2, 3 and 4 respectively.

Question 4 (3 points) Random ghosts are of course not optimal minimax agents, and
so modeling them with minimax search may not be appropriate. Fill in
ExpectimaxAgent, where your agent agent will no longer take the min over all ghost
actions, but the expectation according to your agent's model of how the ghosts act.
To simplify your code, assume you will only be running against RandomGhost ghosts,
which choose amongst their getLegalActions uniformly at random.

You should now observe a more cavalier approach in close quarters with ghosts. In

3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

particular, if Pac-Man perceives that he could be trapped but might escape to grab a
few more pieces of food, he'll at least try. Investigate the results of these two
scenarios:

python pacman.py -p AlphaBetaAgent -l trappedClassic -a depth=3 -q -n 10

python pacman.py -p ExpectimaxAgent -l trappedClassic -a depth=3 -q -n 10

You should find that your ExpectimaxAgent wins about half the time, while your

AlphaBetaAgent always loses. Make sure you understand why the behavior here

differs from the minimax case.

Question 5 (6 points) Write a better evaluation function for pacman in the provided
function betterEvaluationFunction. The evaluation function should evaluate
states, rather than actions like your reflex agent evaluation function did. You may use
any tools at your disposal for evaluation, including your search code from the last
project. With depth 2 search, your evaluation function should clear the smallClassic
layout with two random ghosts more than half the time and still run at a reasonable
rate (to get full credit, Pac-Man should be averaging around 1000 points when he's
winning).

python pacman.py -l smallClassic -p ExpectimaxAgent -a evalFn=better -q -n 10

Document your evaluation function! We're very curious about what great ideas you
have, so don't be shy. We reserve the right to reward bonus points for clever
solutions and show demonstrations in class.

Hints and Observations

As for your reflex agent evaluation function, you may want to use the reciprocal
of important values (such as distance to food) rather than the values themselves.

One way you might want to write your evaluation function is to use a linear
combination of features. That is, compute values for features about the state
that you think are important, and then combine those features by multiplying
them by different values and adding the results together. You might decide what
to multiply each feature by based on how important you think it is.

Mini Contest (3 points extra credit) Pac-Man's been doing well so far, but things
are about to get a bit more challenging. This time, we'll pit Pac-Man against smarter
foes in a trickier maze. In particular, the ghosts will actively chase Pac-Man instead of
wandering around randomly, and the maze features more twists and dead-ends, but
also extra pellets to give Pac-Man a fighting chance. You're free to have Pac-Man use
any search procedure, search depth, and evaluation function you like. The only limit is
that games can last a maximum of 3 minutes (with graphics off), so be sure to use
your computation wisely. We'll run the contest with the following command:

python pacman.py -l contestClassic -p ContestAgent -g DirectionalGhost -q -n 10

The three teams with the highest score (details: we run 10 games, games longer than
3 minutes get score 0, lowest and highest 2 scores discarded, the rest averaged) will
receive 3, 2, and 1 extra credit points respectively and can look on with pride as their
Pac-Man agents are shown off in class. Be sure to document what your agent is
doing, as we may award additional extra credit to creative solutions even if they're
not in the top 3.

Project 2 is done. Go Pac-Man!

3/8/13 Project 2: Multi-A gent Pac-Man

www-inst.eecs.berkeley .edu/~cs188/pacman/projects/multiagent/multiagentProject.html

