3/8/13 Project 1: Search in Pac-Man

Project 1: Search in Pac-Man

All those colored walls,
Mazes give Pac-Man the blues,
So teach him to search.

Introduction

In this project, your Pac-Man agent will find paths through his maze world, both to
reach a particular location and to collect food efficiently. You will build general search
algorithms and apply them to Pac-Man scenarios.

The code for this project consists of several Python files, some of which you will need
to read and understand in order to complete the assignment, and some of which you
can ignore. You can download all the code and supporting files (including this
description) as a zip archive.

Files you'll edit:

search.py Where all of your search algorithms will reside.
searchAgents.py Where all of your search-based agents will reside.

Files you might want to look at:

The main file that runs Pac-Man games. This file describes
pacman.py a Pac-Man GameState type, which you use in this
project.

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13 Project 1: Search in Pac-Man

ame . The logic behind how the Pac-Man world works. This file
describes several supporting types like AgentState,
Agent, Direction, and Grid.

util.py Useful data structures for implementing search algorithms.
Supporting files you can ignore:

graphicsDisplay.py Graphics for Pac-Man

graphicsUtils.py Support for Pac-Man graphics

textDisplay.py ASCII graphics for Pac-Man

ghostAgents.py Agents to control ghosts

kevboardAgents.py Keyboard interfaces to control Pac-Man

layout.py Code for reading layout files and storing their contents

What to submit: You will fill in portions of search.py and searchAgents.py during
the assignment. You should submit these two files (only) along with a partners.txt
file. Type submit pl to submit your code. Here are directions for submitting and
setting up your account.

Evaluation: Your code will be autograded for technical correctness. Please do not
change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder. However, the correctness of your implementation --
not the autograder's output -- will be the final judge of your score. If necessary, we
will review and grade assignments individually to ensure that you receive due credit
for your work.

Academic Dishonesty: We will be checking your code against other submissions in
the class for logical redundancy. If you copy someone else's code and submit it with
minor changes, we will know. These cheat detectors are quite hard to fool, so please
don't try. We trust you all to submit your own work only; please don't let us down. If
you do, we will pursue the strongest consequences available to us.

Getting Help: You are not alone! If you find yourself stuck on something, contact the
course staff for help. Office hours, section, and the newsgroup are there for your
support; please use them. If you can't make our office hours, let us know and we will
schedule more. We want these projects to be rewarding and instructional, not
frustrating and demoralizing. But, we don't know when or how to help unless you ask.
One more piece of advice: if you don't know what a variable does or what kind of
values it takes, print it out.

Welcome to Pac-Man

After downloading the code (search.zip), unzipping it and changing to the search
directory, you should be able to play a game of Pac-Man by typing the following at
the command line:

python pacman.py

Note: if you get error messages regarding python-tk, use your package manager to
install python-tk, or see this page for more detailed instructions. Pac-Man lives in a
shiny blue world of twisting corridors and tasty round treats. Navigating this world

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13

Project 1: Search in Pac-Man

efficiently will be Pac-Man's first step in mastering his domain.

The simplest agent in searchAgents.py is called the GoWestaAgent, which always goes
West (a trivial reflex agent). This agent can occasionally win:

python pacman.py —--layout testMaze —--pacman GoWestAge

4| | H

But, things get ugly for this agent when turning is required:

python pacman.py --layout tinyMaze --pacman GoWestAge

4| | H

If pacman gets stuck, you can exit the game by typing CTRL-c into your terminal.
Soon, your agent will solve not only tinyMaze, but any maze you want. Note that
pacman.py supports a number of options that can each be expressed in a long way
(e.g., —--layout) or a short way (e.g., -1). You can see the list of all options and
their default values via:

python pacman.py -h

Also, all of the commands that appear in this project also appear in commands.txt, for
easy copying and pasting. In UNIX/Mac OS X, you can even run all these commands in
order with bash commands.txt.

Finding a Fixed Food Dot using Search Algorithms

In searchAgents.py, You'll find a fully implemented searchigent, which plans out a
path through Pac-Man's world and then executes that path step-by-step. The search
algorithms for formulating a plan are not implemented -- that's your job. As you work
through the following questions, you might need to refer to this glossary of objects in
the code. First, test that the searchagent is working correctly by running:

python pacman.py -1 tinyMaze -p SearchAgent -a fn=tir

4| | 0

The command above tells the searchAgent to use tinyMazeSearch as its search
algorithm, which is implemented in search.py. Pac-Man should navigate the maze
successfully.

Now it's time to write full-fledged generic search functions to help Pac-Man plan
routes! Pseudocode for the search algorithms you'll write can be found in the lecture
slides and textbook. Remember that a search node must contain not only a state but
also the information necessary to reconstruct the path (plan) which gets to that
state.

Important note: All of your search functions need to return a list of actions that will
lead the agent from the start to the goal. These actions all have to be legal moves
(valid directions, no moving through walls).

Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in
the details of how the fringe is managed. So, concentrate on getting DFS right and
the rest should be relatively straightforward. Indeed, one possible implementation
requires only a single generic search method which is configured with an algorithm-
specific queuing strategy. (Your implementation need not be of this form to receive
full credit).

Hint: Make sure to check out the stack, Queue and PriorityQueue types provided
to you in util.py!

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13 Project 1: Search in Pac-Man

Question 1 (2 points) Implement the depth-first search (DFS) algorithm in the
depthFirstSearch function in search.py. To make your algorithm complete, write
the graph search version of DFS, which avoids expanding any already visited states
(textbook section 3.5).

Your code should quickly find a solution for:

python pacman.py -1 tinyMaze -p SearchAgent
python pacman.py -1 mediumMaze -p SearchAgent

python pacman.py -1 bigMaze -z .5 -p SearchAgent

The Pac-Man board will show an overlay of the states explored, and the order in
which they were explored (brighter red means earlier exploration). Is the exploration
order what you would have expected? Does Pac-Man actually go to all the explored
squares on his way to the goal?

Hint: If you use a Stack as your data structure, the solution found by your DFS
algorithm for mediumMaze should have a length of 130 (provided you push successors
onto the fringe in the order provided by getSuccessors; you might get 244 if you push
them in the reverse order). Is this a least cost solution? If not, think about what
depth-first search is doing wrong.

Question 2 (1 point) Implement the breadth-first search (BFS) algorithm in the
breadthFirstSearch function in search.py. Again, write a graph search algorithm
that avoids expanding any already visited states. Test your code the same way you
did for depth-first search.

python pacman.py -1 mediumMaze -p SearchAgent -a fn=k

1 | H

python pacman.py -1 bigMaze -p SearchAgent -a fn=bfs

1 | 0

Does BFS find a least cost solution? If not, check your implementation.

Hint: If Pac-Man moves too slowly for you, try the option --frameTime 0.

Note: If you've written your search code generically, your code should work equally
well for the eight-puzzle search problem (textbook section 3.2) without any changes.

python eightpuzzle.py

Varying the Cost Function

While BFS will find a fewest-actions path to the goal, we might want to find paths
that are "best" in other senses. Consider mediumbDottedMaze and mediumScaryMaze.
By changing the cost function, we can encourage Pac-Man to find different paths. For
example, we can charge more for dangerous steps in ghost-ridden areas or less for
steps in food-rich areas, and a rational Pac-Man agent should adjust its behavior in
response.

Question 3 (2 points) Implement the uniform-cost graph search algorithm in the
uniformCostSearch function in search.py. We encourage you to look through
util.py for some data structures that may be useful in your implementation. You
should now observe successful behavior in all three of the following layouts, where the
agents below are all UCS agents that differ only in the cost function they use (the

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13

Project 1: Search in Pac-Man

agents and cost functions are written for you):

python pacman.py -1 mediumMaze -p SearchAgent -a fn=t

1 | H

python pacman.py -1 mediumDottedMaze -p StayEastSearc

1 | 0

python pacman.py -1 mediumScaryMaze -p StayWestSearct

1 | 0

Note: You should get very low and very high path costs for the
StayEastSearchAgent and StayWestSearchAgent respectively, due to their
exponential cost functions (see searchAgents.py for details).

A* search

Question 4 (3 points) Implement A* graph search in the empty function
aStarSearch in search.py. A* takes a heuristic function as an argument. Heuristics
take two arguments: a state in the search problem (the main argument), and the
problem itself (for reference information). The nullHeuristic heuristic function in
search.py is a trivial example.

You can test your A* implementation on the original problem of finding a path through
a maze to a fixed position using the Manhattan distance heuristic (implemented
already as manhattanHeuristic in searchAgents.py).

python pacman.py -1 bigMaze -z .5 -p SearchAgent -a f

1| | 0

You should see that A* finds the optimal solution slightly faster than uniform cost
search (about 549 vs. 620 search nodes expanded in our implementation, but ties in
priority may make your numbers differ slightly). What happens on openMaze for the
various search strategies?

Finding All the Corners

The real power of A* will only be apparent with a more challenging search problem.
Now, it's time to formulate a new problem and design a heuristic for it.

In corner mazes, there are four dots, one in each corner. Our new search problem is
to find the shortest path through the maze that touches all four corners (whether the
maze actually has food there or not). Note that for some mazes like tinyCorners, the
shortest path does not always go to the closest food first! Hint: the shortest path
through tinyCorners takes 28 steps.

Question 5 (2 points) Implement the CornersProblem search problem in
searchAgents.py. You will need to choose a state representation that encodes all
the information necessary to detect whether all four corners have been reached. Now,
your search agent should solve:

python pacman.py -1 tinyCorners -p SearchAgent -a fn=

1 | 0

python pacman.py -1 mediumCorners -p SearchAgent -a f

1 | 0

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13 Project 1: Search in Pac-Man

To receive full credit, you need to define an abstract state representation that does
not encode irrelevant information (like the position of ghosts, where extra food is,
etc.). In particular, do not use a Pac-Man GameState as a search state. Your code
will be very, very slow if you do (and also wrong).

Hint: The only parts of the game state you need to reference in your implementation
are the starting Pac-Man position and the location of the four corners.

Our implementation of breadthFirstSearch expands just under 2000 search nodes on
mediumCorners. However, heuristics (used with A* search) can reduce the amount of
searching required.

Question 6 (3 points) Implement a heuristic for the CornerspProblem in
cornersHeuristic. Grading: inadmissible heuristics will get no credit. 1 point for any
admissible heuristic. 1 point for expanding fewer than 1600 nodes. 1 point for
expanding fewer than 1200 nodes. Expand fewer than 800, and you're doing great!

python pacman.py -1 mediumCorners -p AStarCornersAger
J | o

Hint: Remember, heuristic functions just return numbers, which, to be admissible, must
be lower bounds on the actual shortest path cost to the nearest goal.

Note: AStarCornersAgent is a shortcut for -p SearchAgent -a
fn=aStarSearch,prob=CornersProblem, heuristic=cornersHeuristic.

Eating All The Dots

Now we'll solve a hard search problem: eating all the Pac-Man food in as few steps as
possible. For this, we'll need a new search problem definition which formalizes the
food-clearing problem: FoodSearchProblem in searchAgents.py (implemented for
you). A solution is defined to be a path that collects all of the food in the Pac-Man
world. For the present project, solutions do not take into account any ghosts or
power pellets; solutions only depend on the placement of walls, regular food and Pac-
Man. (Of course ghosts can ruin the execution of a solution! We'll get to that in the
next project.) If you have written your general search methods correctly, A* with a
null heuristic (equivalent to uniform-cost search) should quickly find an optimal
solution to testSearch with no code change on your part (total cost of 7).

python pacman.py -1 testSearch -p AStarFoodSearchAger
4| | B

Note: AStarFoodSearchAgent is a shortcut for -p SearchAgent -a
fn=astar,prob=FoodSearchProblem, heuristic=foodHeuristic.

You should find that UCS starts to slow down even for the seemingly simple
tinySearch. As a reference, our implementation takes 2.5 seconds to find a path of
length 27 after expanding 4902 search nodes.

Question 7 (5 points) Fill in foodHeuristic in searchAgents.py With a consistent
heuristic for the FoodSearchProblem. Try your agent on the trickySearch board:

python pacman.py -1 trickySearch -p AStarFoodSearchAc

1] H

Our UCS agent finds the optimal solution in about 13 seconds, exploring over 16,000
nodes. If your heuristic is admissible, you will receive the following score, depending
on how many nodes your heuristic expands.

Fewer nodes than: Points

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13

Project 1: Search in Pac-Man

15000 1
12000 2

9000 3 (medium)
7000 4 (hard)

If your heuristic is inadmissible, you will receive no credit, so be careful! Think through
admissibility carefully, as inadmissible heuristics may manage to produce fast searches
and even optimal paths. Can you solve mediumSearch in a short time? If so, we're
either very, very impressed, or your heuristic is inadmissible.

Admissibility vs. Consistency?Technically, admissibility isn't enough to guarantee
correctness in graph search -- you need the stronger condition of consistency. For a
heuristic to be consistent, it must hold that if an action has cost ¢, then taking that
action can only cause a drop in heuristic of at most c. If your heuristic is not only
admissible, but also consistent, you will receive 1 additional point for this question.

Almost always, admissible heuristics are also consistent, especially if they are derived
from problem relaxations. Therefore it is probably easiest to start out by brainstorming
admissible heuristics. Once you have an admissible heuristic that works well, you can
check whether it is indeed consistent, too. Inconsistency can sometimes be detected
by verifying that your returned solutions are non-decreasing in f-value. Morevoer, if
UCS and A* ever return paths of different lengths, your heuristic is inconsistent. This
stuff is tricky. If you need help, don't hesitate to ask the course staff!

Suboptimal Search

Sometimes, even with A* and a good heuristic, finding the optimal path through all the
dots is hard. In these cases, we'd still like to find a reasonably good path, quickly. In
this section, you'll write an agent that always eats the closest dot.
ClosestDotSearchAgent is implemented for you in searchAgents.py, but it's missing
a key function that finds a path to the closest dot.

Question 8 (2 points) Implement the function findPathToClosestDot in
searchAgents.py. Our agent solves this maze (suboptimally!) in under a second with
a path cost of 350:

python pacman.py -1 bigSearch -p ClosestDotSearchAger

4| | 0

Hint: The quickest way to complete findPathToClosestDot is to fill in the
AnyFoodSearchProblem, which is missing its goal test. Then, solve that problem with
an appropriate search function. The solution should be very short!

Your ClosestDotSearchAgent won't always find the shortest possible path through
the maze. (If you don't understand why, ask a GSI!) In fact, you can do better if you

try.

Mini Contest (2 points extra credit) Implement an ApproximateSearchAgent in
searchAgents.py that finds a short path through the bigsearch layout. The three
teams that find the shortest path using no more than 30 seconds of computation will
receive 2 extra credit points and an in-class demonstration of their brilliant Pac-Man
agents.

python pacman.py -1 bigSearch -p ApproximateSearchAge

1| | 0

We will time your agent using the no graphics option -g, and it must complete in under
30 seconds on our grading machines. Please describe what your agent is doing in a

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

3/8/13

Project 1: Search in Pac-Man

comment! We reserve the right to give additional extra credit to creative solutions,
even if they don't work that well. Don't hard-code the path, of course.

Object Glossary

Here's a glossary of the key objects in the code base related to search problems, for
your reference:

SearchProblem (search.py)
A SearchProblem is an abstract object that represents the state space,
successor function, costs, and goal state of a problem. You will interact with
any SearchProblem only through the methods defined at the top of search.py

PositionSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with --- it
corresponds to searching for a single pellet in a maze.

CornersProblem (searchAgents.py)
A specific type of SearchProblem that you will define --- it corresponds to
searching for a path through all four corners of a maze.

FoodSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with --- it
corresponds to searching for a way to eat all the pellets in a maze.

Search Function
A search function is a function which takes an instance of SearchProblem as a
parameter, runs some algorithm, and returns a sequence of actions that lead to
a goal. Example of search functions are depthFirstSearch and
breadthFirstSearch, which you have to write. You are provided
tinyMazeSearch which is a very bad search function that only works correctly
on tinyMaze

SearchAgent
SearchAgent is is a class which implements an Agent (an object that interacts
with the world) and does its planning through a search function. The
SearchAgent first uses the search function provided to make a plan of actions
to take to reach the goal state, and then executes the actions one at a time.

www -inst.eecs.berkeley .edu/~cs188/pacman/projects/search/search.html

