3/8/13 Contest: Pac-Man Capture the Flag

Contest: Pac-Man Capture the Flag

Enough of defense,
Onto enemy terrain.
Capture all their food!

Introduction

The course contest involves a multi-player capture-the-flag variant of Pac-Man, where agents control both
Pac-Man and ghosts in coordinated team-based strategies. Your team will try to eat the food on the far side
of the map, while defending the food on your home side. The contest code is available as a zip archive.

Key files to read:

The main file that runs games locally. This file also describes the new capture

capture.py
— the flag GameState type and rules.

pacclient.py The main file that runs games over the network.
captureAgents.p Specification and helper methods for capture agents.

Supporting files:

The logic behind how the Pac-Man world works. This file describes several

e supporting types like AgentState, Agent, Direction, and Grid.
util.py Useful data structures for implementing search algorithms.
distanceCalculator.py Computes shortest paths between all maze positions.
graphicsDisplay.p Graphics for Pac-Man
graphicsUtils.p Support for Pac-Man graphics
textDisplay.py ASCII graphics for Pac-Man
keyboardAgents.p Keyboard interfaces to control Pac-Man
layout.py Code for reading layout files and storing their contents

Academic Dishonesty: While we won't grade contests, we still expect you not to falsely represent your
work. Please don't let us down.

Rules of Pac-Man Capture the Flag

Layout: The Pac-Man map is now divided into two halves: blue (right) and red (left). Red agents (which all
have even indices) must defend the red food while trying to eat the blue food. When on the red side, a red
agent is a ghost. When crossing into enemy territory, the agent becomes a Pac-Man.

Scoring: When a Pac-Man eats a food dot, the food is permanently removed and one point is scored for that
Pac-Man's team. Red team scores are positive, while Blue team scores are negative.

Eating Pac-Man: When a Pac-Man is eaten by an opposing ghost, the Pac-Man returns to its starting
position (as a ghost). No points are awarded for eating an opponent. Ghosts can never be eaten.

www-inst.eecs.berkeley.edu/~cs188/pacman/projects/contest/contest.html

3/8/13 Contest: Pac-Man Capture the Flag

Winning: A game ends when one team eats all but two of the opponents' dots. Games are also limited to
3000 agent moves. If this move limit is reached, whichever team has eaten the most food wins.

Computation Time: Each agent has 1 second to return each action. Each move which does not return within
one second will incur a warning. After three warnings, or any single move taking more than 3 seconds, the
game is forfeit. There will be an initial start-up allowance of 15 seconds (use the registerInitialState
function).

Observations: Agents can only observe an opponent's configuration (position and direction) if they or their
teammate is within 5 squares (Manhattan distance). In addition, an agent always gets a noisy distance
reading for each agent on the board, which can be used to approximately locate unobserved opponents.

Play Balancing: Over the semester we will be improving the game. Several likely changes are: (1) power
pellets, (2) a start-up time allowance, and (3) ongoing level redesign.

Submission Instructions

To enter an agent into the nightly tournaments, create a subdirectory in the teams directory with the same
name as your agent, and put the code for your agent in it. Then properly fill out config.py with your team
name, agents, and other options, and place it in the directory along with the rest of your files. After this, you
can submit under the assignment name contest. For your reference, we have provided a sample config.py
configured for the BaselineAgent. The BaselineAgent directory itself is inside the teams directory. Make
sure to pick a unique team name!

Getting Started

By default, you can run a four-agent game with simple BaselineAgents that the staff has provided:
python capture.py

A wealth of options are available to you:
python capture.py --help

There are six slots for agents, where agents 0, 2 and 4 are always on the red teamand 1, 3 and 5 on the blue
team. Agents are created by agent factories (one for Red, one for Blue). See the section on designing agents
for a description of the agents invoked above. The only agents available now are the BaselineAgents. They
are chosen by default, but as an example of how to choose teams:

python capture.py -r BaselineAgents -b BaselineAgents

which specifies that the red team -r and the blue team -b are BaselineAgents. To control an agent with the
keyboard, pass the appropriate option to the red team:

python capture.py --redOpts first=keys

The arrow keys control your character, which will change from ghost to Pac-Man when crossing the center
line.

Game Types

You can play the game in three ways: local games, ad hoc network games, and nightly tournaments.

Local games (described above) allow you to test your agents against the baseline teams we provide and are
intended for use in development.

Ad Hoc Network Games

In order to facilitate testing of your agents against others' in the class, we have set up game servers that
moderate ad hoc games played over the network.

python pacclient.py

Teams are chosen similarly to the local version. See python capture.py -h for details. Any agent that works
in a local game should work equivalently in an online game. Note that if you violate the per-action time limit in
an online game, a move will be chosen for you on the server, but your computation will not be interrupted.
Students in the past have struggled to understand multi-threading bugs that arise from violating the time limit
(even if your code is single-threaded), so stay within the time limit!

Named Games

By default, when you connect to the server for a network game, you will be paired with the first unmatched

www-inst.eecs.berkeley.edu/~cs188/pacman/projects/contest/contest.html 2/5

3/8/13 Contest: Pac-Man Capture the Flag

opponent that connects. If you would like to play with a buddy, you can organize a game with a specific name
on the server:

python pacclient.py -g MyCoolGame
Which will pair you only with the next player who requests "MyCoolGame".

Coordinating With Other Teams

Finding an opponent for network games may be difficult because it requires someone else to be online and
looking for a game at approximately the same time. It may be a good idea for your team to get together with
other teams to compete or practice over the network. Alternately, you could run two separate instances of
python pacclient.py -g MyCoolGame on a single computer, and play your agents against themselves.

Official Tournaments

The actual competitions will be run using nightly automated tournaments, with the final tournament deciding
the final contest outcome. To enter an agent into the nightly tournaments, make sure to properly fill in
config.py and then submit under the assignment name contest. Be sure to pick a unique name for your
team. Tournaments are run everyday at midnight and include all teams that have been submitted (either
earlier in the day or on a previous day) as of the start of the tournament. Currently, each team plays every
other team in a best-of-3 match, but this may change later in the semester. The results are updated on the
website after the tournament completes each night.

Designing Agents

Unlike project 2, an agent now has the more complex job of trading off offense versus defense and effectively
functioning as both a ghost and a Pac-Man in a team setting. Furthermore, the limited information provided to
your agent will likely necessitate some probabilistic tracking (like project 4). Finally, the added time limit of
computation introduces new challenges.

Baseline Agents: To kickstart your agent design, we have provided you with two baseline agents. They are
both quite bad. The offensiveReflexAgent moves toward the closest food on the opposing side. The
DefensiveReflexAgent wanders around on its own side and tries to chase down invaders it happens to see.

Directory Structure: You should place your agent code in a new sub-directory of the teams directory. You
will need a config.py file, which specifies your team name, authors, agent factory class, and agent options.
See the BaselineAgents example for details.

Interface: The GameState in capture.py should look familiar, but contains new methods like getRedFood,
which gets a grid of food on the red side (note that the grid is the size of the board, but is only true for cells
on the red side with food). Also, note that you can list a team's indices with getRedTeamIndices, or test
membership with isOnRedTeam.

Finally, you can access the list of noisy distance observations via getAgentDistances. These distances are
within 6 of the truth, and the noise is chosen uniformly at random from the range [-6, 6] (e.qg., if the true
distance is 6, then each of {0, 1, ..., 12} is chosen with probability 1/13). You can get the likelihood of a
noisy reading using getDistanceProb.

Distance Calculation: To facilitate agent development, we provide code in distanceCalculator.py to
supply shortest path maze distances.

To get started designing your own agent, we recommend subclassing the captureagent class. This provides
access to several convenience methods. Some useful methods are:

def getFood(self, gameState):
Returns the food you're meant to eat. This is in the form
of a matrix where m[x][y]l=true if there is food you can
eat (based on your team) in that square.

wwn

def getFoodYouAreDefending(self, gameState):
mmon
Returns the food you're meant to protect (i.e., that your
opponent is supposed to eat). This is in the form of a
matrix where m([x] [y]=true if there is food at (x,y) that
your opponent can eat.

wuwn

def getOpponents (self, gameState):

wwn

Returns agent indices of your opponents. This is the list
of the numbers of the agents (e.g., red might be "1,3,5")

wuwn

www-inst.eecs.berkeley.edu/~cs188/pacman/projects/contest/contest.html 3/5

3/8/13

Contest: Pac-Man Capture the Flag
def getTeam(self, gameState) :

Returns agent indices of your team. This is the list of
the numbers of the agents (e.g., red might be "1,3,5")

wwn

def getScore(self, gameState):
Returns how much you are beating the other team by in the
form of a number that is the difference between your score
and the opponents score. This number is negative if you're
losing.

mwwn

def getMazeDistance(self, posl, pos2):

wwn

Returns the distance between two points; These are calculated
distancer object.

u

If distancer.getMazeDistances () has been called, then maze dist

Otherwise, this just returns Manhattan distance.

wuwn

def getPreviousObservation(self):
mwwn
Returns the GameState object corresponding to the last
state this agent saw (the observed state of the game last
time this agent moved - this may not include all of your
opponent's agent locations exactly) .

mmwn

def getCurrentObservation(self):

wwn

Returns the GameState object corresponding this agent's

current observation (the observed state of the game - this
may not include all of your opponent's agent locations
exactly) .

wawn

a I

disqualified. In fact, we do not recommend any sort of multi-threading.

Contest Details

i3

Restrictions: You are free to design any agent you want. However, you will need to respect the provided
APIs if you want to participate in the tournaments. Agents which compute during the opponent's turn will be

The contest has two parts: a qualifying round and a final tournament.

e Qualifying: Every night, we will post the results of a round robin tournament among all submitted agents,
including a qualifying "Staff Agents" team. To qualify for the final tournament, you must first submit your
agents according to the instructions. Then, you must be ranked ahead of Staff Agents in one of the

nightly tournaments before the qualification deadline. The earlier you submit your agents, the more
chances you have to qualify!

Tournament: (details subject to change) A final double-elimination tournament will be run in the

basement of Soda hall on the evening before the last day of class (Wednesday 12/2). The final lecture

the next day will include replays of important matches. The final tournament will be similar to the

defaultCapture layout.

Important dates (subject to change):

Monday 9/21 Contest announced and posted
Tuesday 11/10 Qualification opens

Thursday 11/26 Tournament layout revealed
Monday 11/30 Qualification closes
Wednesday 12/2 Final tournament

Thursday 12/3 Awards ceremony in class

Teams: You may work in teams of up to 5 people.

Prizes: The top three teams will receive awards in class, including shiny medals and extra credit points.

All teams that qualify for the final tournament will also receive extra credit points.
www-inst.eecs.berkeley.edu/~cs188/pacman/projects/contest/contest.html

4/5

3/8/13 Contest: Pac-Man Capture the Flag

o First Place: 4% final exam point increase

o Second Place: 3% final exam point increase
o Third Place: 2% final exam point increase
Qualifying: 1% final exam point increase

[+

Acknowledgements

Many thanks to Jeremy Cowles for implementing the tournament infrastructure. Thanks to Barak Michener
and Ed Karuna for providing online networking infrastructure, improved graphics and debugging help.

Have fun! Please bring our attention to any problems you discover.

www-inst.eecs.berkeley.edu/~cs188/pacman/projects/contest/contest.html 5/5

