[image: image1.png]General Tree Search

s 2 solution, or failure

function TREF-SEARCH(problem, strategy) ret
intialze the search tree using the initial state of problern
loop do
if there are no candidates for expansion then rcturn faiure
choose leaf node for expansion according to strategy
i the node contains a goal state then return the corresponding soution
else expand the node and add the resuling nodes to the search tree
end

[image: image2.png]QUESTION 1

EARLY GOAL CHECKING GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed an empty set
Jringe ¢ INSERT(MAKE-NODE(INITIAL-STATE[problen]), fringe)
loop do
if fringe is cmpty then return failure
node & REMOVE-FRONT(fringe, strategy)
i GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closcd then
add STATE[node] to closed
for child-node in EXPAND(STATE[node], problem) do
fringe INSERY(child-node, fringe)
end

end

With the above implementation a node that reaches a goal state may sit on the fringe while the algorithm
continues to search for a path that reaches a goal state. Let's consider altering the algorithm by testing
whether anode reaches a goal state when inserting into the fringe. Concretely, we add the line of code
highlighted below:

function EARLY-GOAL-CHECKING-GRAPH-SEARCH (problern, fringe, strategy) return a solution, or failure
closed ¢ an cmpty set

fringe ~ INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure
node REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node], problem) do

Jringe + INSERT(child-node, fringe)
end
end

[image: image3.png]QUESTION 11: LOOKAHEAD GRAPH SEARCH

Recall from lecture the general algorithm for Graph Search reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed + an empty set
Jringe « INSERT(MAKE-NODE(INTIAL-STATE[problen]), fringe)
loop do
if fringe is empty then return failure
node & REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[n0dc]) then return node

end

Using GRAPH-SEARCH, when a node is expanded it is added to the closed set. This means that even if a node
is added to the fringe multiple times it will not be expanded more than once. Consider an alternative version
f GRAPH-SEARCH, LOOKAHEAD-GRAPH-SEARCH, which saves memory by sing a "fringe-closed-set” keeping
track of which states have been on the fringe and only adding a child node to the fringe if the state of that
child node has not been added to it at some point. Concretely, we replace the highlighted block above with
the highlighted block below.

[image: image4.png]function LOOKANEAD-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
Jringe-closed ¢ an empty set
Jringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
add INITIAL-STATE|problem] to fringe-closed
loop do
if fringe is empty then return failure
node & REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
for child-node in EXPAND(node, problem) do
I STATE[child-niode] is not in fringe-closed then
add STATE[child-node) to fringe-closed
Jringe « INSERT(child-node, fringe)

end
end

[image: image5.png]QUESTION 12: MEMORY EFFICIENT GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

Function GRAPH-SEARCH(problerm, fringe, strategy) return a solution, or failure
closed ¢ an empty set
Jringe ¢ INSERT(MAKE-NODE(INITIAL-STATE[problern]), fringe)
loop do
if fringe is empty then return failure
node ¢ REMOVE-FRONT(fringe, stratcgy)
if GOAL-TEST(problern, STATE[node]) then return node
if STATE[n0de] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[nodc), problem) do
Jfringe « INSERT(child-node, fringe)
end
end

Using GRAPH-SEARCH, when a node s expanded it is added to the closed set. This means that even if a node
s added to the fringe multiple times it will not be expanded more than once. Consider an alternate version
of GRAPH-SEARCH, MEMORY-EFFICIENT-GRAPH-SEARCH, which saves memory by (a) not adding node nto the
fringe if STATE[] is in the closed set, and (b) checking f there s already a node in the fringe with last state
equal to STATE[A]. If so, rather than simply inserting, t checks whether the old node or the newnode has the
cheaper path and then accordingly leaves the fringe unchanged or replaces the old node by the new node.

By doing this the fringe neads less memory, however insertion becomes more computationally expensive,

[image: image6.png]function MEMORY-EFFICIENT-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed ¢ an empty set
Jringe ¢ INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
if fringe is cmpty then return failure
node ¢ REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
STATE[nodd] is not in closcd then
add STATE[nod] to closed

for child-node in EXPAND(STATE[node], problem) do

end

end

function SPECIAL-INSERT(node, fringe, closcd) return fringe
if STATE[node] not in closed sct then
if STATE[node] is not in STATE[fringe] then
Jringe INSERT(node, fringe)
else if STATE[node] has lower cost than cost of node in fringe reaching STATE[node] then
Jringe REPLACE(node, fringe)

Now, we've produced a more memory efficient graph search algorithm. However, in doing so, we might have
affected some properties of the algorithim. Assume you run MEMORY-EFFICIENT-GRAPH-SEARCH with the A*
node expansion strategy and a consistent heuristic, select all statements that are true.

¥ The EXPAND function can be called at most once for each state.
. The algorithm is complete.
R The algorithm will return an optimal solution.

[image: image7.png]QUESTION 13: A*-CSCS

Recall that a dictionary, also known as a hashmap, works as follows:
Inserting a key-value pair into a dictionary when the key is not already in the dictionary adds the pair to the
dictionary:

dict + an empty dictionary
diet]*key”] ¢ “value”
print dic*key”]

- “value”

Updating the value associated with a dictionary entry is done as follows:

dict[“key”] ¢ “new value”
print dict[“key”]
- “new value”

We sawthat for A* graph search to be guaranteed to be optimal the heuristic needs to be consistent. In this.
question we explore a new search procedure using a dictionary for the closed set, A* -graph-search-with-
Cost-Sensitive-Closed-Set (A" - CSCS).

n A*-CSCS-GRAPH-SEAR

(problem, fringe, strategy) return a solution, o failure

ATE[problem)), Jringe)
loop do

if fringe is empty then return failure

node ¢ REMOVE-FRONT(fringe, strategy)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[n0de] is not in closed|

for child-node in EXPAND(node, problem)
Jringe ¢ INSERT(child-node, fringe)
end

end

[image: image8.png]Backtracking Search

function BACKTRACKING:

ARC(csp) returns solution /falure

vaturn RECURSIVE-BACKTRACKING({), 05p)

function RECURSIVE-DACK TRACKING (wssignon il c5p) retuns sol failure
f aaignment is complete then return aatgninent
var o SELECT-UNASSIGNED- VARIARLE(VARIARLES[e], assignment, csp)
for each valur in ORDER-DOMAIN-VALUES{rar, assigument, csp) do
value s consistent with assianment given CONSTRAINTS[cs7] then
add {var = valuc} to assigmment
et = RECURSIVE-BACKTRACKING assignn i, c57)
if reoult # failure the n reault
ramova {var = valuc) from assignment
vetuen failur

[image: image9.png]Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: 5,3 binary CSP with variables (X1, X, ... X
local variables: guic, a queue of arcs, initialy all the arcs in ¢y

while gucie is not empty do
(X,. ;) — REMOVE-Finst (geuc)
if REMOVE-INCONSISTENT-VALUES(Y, X,) then
for each X in NeiGHnons[X] do
add (X, X)) to quene

Fumction REMOVE-INCONSISTENT-VALUES(X,. X,) returns true if succeeds
remored — fulse
for each 7in DovIAIN[X] do
00 value in DOMAINLY,] alows (1) to stisy the constraint X, - X,
then deete + from DOMAIN[); remoreal— truc
return reruoed

= Runtime: O(n%?), can be reduced to O(n?d?)
= . but detecting all possible future problems is NP-hard — why?

[image: image10.png]Ordering: Minimum Remaining Values

® Variable Ordering: Minimum remaining values (MRV):
® Choose the variable with the fewest legal left values in its domain

[image: image11.png]Ordering: Least Constraining Value

® Value Ordering: Least Constraining Value
= Given a choice of variable, choose the least
constraining value S
® le., the one that rules out the fewest values in
the remaining variables
= Note that it may take some computation to
determine this! (E.g., rerunning filtering) L

[image: image12.png]Backtracking Search

ction BACKTRACKING-SEARCH(exp) raturns solution/falura
{1} esn)
ction RECURSIVE-DACKTRACKING (ussignime it cap)
i aasignment is complete then return assignment
ARIABLE(VARIABLES[c 7], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assigninent, csp) do
if valuc is consistent with assiqnment given CONSTRAINTS[cs7] then
add {var = value} 1o assignment
st~ RECURSIVE-BACKTRACKING assignmnent, csp)
i reault foilure then return reault
ramove {var = valuc} from assignment
voturn fuilur

return RECURSIVE-BACKTRACK

s soln failure

var— SELECT-UNASSIGNED-

[image: image13.png]Simulated Annealing

= Idea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

function SIMULATED- ANNEALING|
inputs: probie, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

prablem, schedule) returns a solution state

neit, a node
7.2 “temperature” controlling prob. of downward steps

current — MAKE-NODE(INITIAL-STATE[problern])
for t— 1to x do

T scheduleli

if 7= 0 then return current

nert —a randomly selected successor of current

AE— VALUE[nert] - VALVE[current]

i AE > 0 then current — nest

else current — nest only with probability ¢ £/T

Code: Russell and Norvig

[image: image14.png]Genetic Algorithms

24748552 | 24 31% [32752411 32748552
P‘<\ s [2ivsen]

[24415124 ;20{\ 32753411 >_< 32752124 3Pb2124

32543213 11 14% ~[22a15124 24415811 |—~[2421541

(32752211] 723 2% ~[247a8552

Fitness Selection Pairs Cross-Over Mutation

» Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

[image: image15.png]Alpha-Beta Implementation

@ MAX's best optionion path toroot
B: MIN's best option on path ta root.

[image: image16.png]Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

[image: image17.png]Expectimax Pseudocode

v=(1/2) (8) +(1/3) (24) + (1/6) (-12) = 10

[image: image18.png]The Axioms of Rationality

‘Orderability

(A> BYY (B+ A}V (A~B)
Transithaty

(A= BYA(BrCY= (420}
Continuity

ArB>Co3plp 4 1-pC]~B
Substitutability

A~B2>[pA 1-p.0~ B 1-p.C]
Mangtonicity

Ar B>

(pzeelp A i-p B2 lg.A 1-9.8])

[image: image19.png]MEU Principle

= Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

UA)>UB) & A= B
U(lp1.51; --. 3 pnsSnl) = imiU(5))

* Le.values assigned by U preserve preferences of both prizes and lotteries!

= Maximum expected utility (MEU) principle:
» Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities

* Eg.alookup table for perfect

tac-toe, a reflex vacuum cleaner

[image: image20.png]Utility Scales

Normalized utilities: u, = 1.0, u_= 0.0

Micromorts: one-millionth chance of death, useful for
paying to reduce product risks, etc.

QALYs: quality-adjusted life years, useful for medical
decisions involving substantial risk

Note: behavior s invariant under positive linear
transformation

U'(x) = kyU(x) + kp where k; >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes

