QUESTION 1: SEARCH TREES

How many nodes are in the complete search tree for the given state space graph? The start stateis 5. You
may find it helpful to draw out the search tree on a piece af paper.

)

OO

QUESTION 2: BREADTH-FIRST SEARCH

Consider a breadth-first graph search on the graph below, where Sisthe start and Gisthe goal state.
Assume that ties are broken alphabetically (so a partial plan S-=X-=4 would be expanded before S-=X-=B and
S-=A-=Z would be expanded before 5-=B-=A). You may find it helpful to execute the search an scratch paper.

Select the final path returned by breadth-first graph search. To select g path, click an each ofthe nodes in

®
/

©

\
©

States you correctly identified are marked with a solid green circle, and the states you identified incorrectly

the state-space graph that are part afthe path.

are marked with a dotted red circle. \/

QUESTION 3: DEPTH-FIRST SEARCH

Caonsider a depth-first graph search on the graph below, where Sisthe start and Gisthe goal state. Assume
that ties are broken alphabetically (so a partial plan 5-=X-=A wauld be expanded before S-=X-=B and 5-=A->7
walld be expanded before S-=B-=4). You may find it helpful to execute the search on scratch paper.

Select the final path returned by depth-first graph search. To select a path, click on each ofthe nodesinthe
state-space graph that are part af the path.

©—0—-0

OO

States yau carrectly identified are marked with a solid green circle, and the states you identified incorrectly

are marked with a dotted red circle. V

QUESTION 4: A* SEARCH

Consider &% graph search on the graph below. Arcs are labeled with action costs and states are labeled with
heuristic values. Assume that ties are broken alphabetically (so a partial plan S-=X-=A would be expanded
before 5-=X->B and 5-=A->Z would be expanded before S-=B-=A.

In what order are states expanded by A* graph search? You may find it helpful to execute the search an
scratch paper.
v ' Start, A B, C, D, Goal

C Start, A C, Goal

@ Start, B, A D, C, Goal

€ <rart, A, D, Goal

' <tart, A, B, Goal

© Start, B, A D, B, C, Goal

What path does A* graph search return?
v ' Start-A-C-Goal

' Start-B-Goal

@ Start-A-D-Goal
srart-A-B-Goal

Start-A-B-D-Goal

HIVE MINDS

The next five questions share a commaon setup. You control ane ar mare insects in a rectangular maze-like
environment with dimensions M x N | as shown in the figure below.

At each time step, an insect can move into an adjacent squareifthat squareis currently free, or the insect
may stayin its current lacation. Squares may be blacked by walls, but the map is known. Optimality is
always in terms of time steps; all actions have cost 1 regardless of the number of insects moving or

where they move.

For each ofthe five questions, you should answer for a general instance ofthe problem, not simply for the

example maps shown.

QUESTION 5: HIVE MINDS: LONELY BUG

You control a single insect as shown in the maze below, which must reach a designated target location ¥,

also known as the hive. There are no ather insects moving around.

Which of the following is a minimal correct state space representation?
v C Aninteger d encoding the Manhattan distance to the hive.
& Aruple (z,y) encoding the x and y coordinates ofthe insect.

C Atuple (z,y, d) encoding the insect's and iy coordinates as well as the Manhattan distance to

the hive.

T This cannot be represented as a search problem.

What is the size ofthe state space?
v © MN

(MN)?

9 MN

e

N_r‘-u

max(M. N)

o e T T

Which of the following heuristics are admissible (if any)?
v 4 M Manhattan distance from the insect's location to the hive.
M Euclidean distance from the insect's location to the hive.

I Murmnber of steps taken by the insect.

QUESTION 6: HIVE MINDS: SWARM MOVEMENT

You control X insects, each of which has a specific target ending location Xp. Mo two insects m ay occupy
‘2e s in

place); adjacent insects cannot swap in a single time step.

Which ofthe following is a minimal correct state space representation?

v & I tuples ({1 .4y). (T2.Ya), ... (TK YK)) encoding the x and y coordinates of each insact.

o K tuples ({1 .4y). (T2 Y2), ... (TK YK)) encoding the x and y coordinates of each insact,
plus K boolean variables indic ating whether each insect is next to anather insact.

¢ Kruples({T1,u). (T2,Y2),. .. . (TK,¥x)) encoding the @ and ¥ coordinates of each insect,
plus M N booleans indicating which squares are currently occupied by an insect.

¢ MN booleans (b1, ba, byrw) encading whether or not an insect is in each square.

What is the size ofthe state space?

v

o

ONES TS

5 TS TS T

MN
2 "‘H- ,_nlr
KMN
(MN)E

(MN)% 2K
(MN)"2M¥N
2K (N
2."14.-‘\.-'!{

Which ofthe following heuristics are admissible {if any)?

v

-

sum of Manhattan distances from each insect's location to its targer locatian.

Sum of costs of aptimal paths for each insect to its goal if it were acting alone in the
environment, unobstructed by the other insects.

Max of Manhattan distances from each insect's location to its target lacation.

Max of costs af optimal paths for each insect toits goal if it were acting alone in the environment,
unopstructed by the other insacrs.

Mumber ofinsects that have not yet reached their target location.

QUESTION 7: HIVE MINDS: MIGRATING BIRDS

You again control a single insect, but there are Bpirds flying along known paths. Specifically, at timet each
bird b will be at position (T(2),4(1)). The tuple of bird positions repeats with period T'. Birds might maove
up to 3 squares per time step. An example is shown below, but keep in mind that you should answer far a
general instance of the problem, not simply the map and path shown below.

Your insect can share squares with birds and it can even hitch a ride an them! On any time step that your
insect shares a square with a bird, the insect may either move as normal or move directly to the bird's next
location (either action has cost 1, even ifthe bird travels farther than one square).

Which of the following is a minimal state representation?

v € Atuple (@,y) giving the position of the insect.

€ Atuple (@, y) giving the position of the insect, plus a tuple of bird positions (b, 4y) giving the
location of each bird.

@ Atuple (@, y) giving the position of the insect, plus an integer 7 = ¢ mod T wheret isthe time
step.

C Atuple (@,y) giving the position of the insect, plus B boolean variables indicating whether each
ofthe birds is carrying an insect passenger.

C Atuple (z,y) giving the position of the insect, plus a tuple of bird positions (Tb,yp) giving the
location of each bird, plus B hoolean variables indicating whether each of the birds is carrying
aninsect passenger.

Which ofthe following is the size ofthe state space?
v © MN
& MNT
MNEB
MNTB
{_-'1 I‘;\y)B+1
2MN N
(MN)B12B

i IS TS TS

Which ofthe following heuristics are admissible (if any)?

v " Cost ofoptimal path to target in the simpler problem that has no birds.
" Manhattan distance from the insect's current position to the target,
I Manhattan distance from the insect's current position to the nearest bird.

¥ Manhattan distance from the insect's current position to the target divided by three.

QUESTION 8: HIVE MINDS: JUMPING BUG

Your single insect is alone in the maze again. This time, it has super legs that can takeit as far as you want in

", 50 NowWit

a straight line in each time step. The disadvantage ofthese legsis that they make turning slowe

takes theinsect atime step ta change the direction it is facing. Moving ¥ squares requires that all

intermediate squares passed through, as well as the vth square, currently be empty. The cost of a multi-

square move is still 1 time unit, asis a turning move. As an example, the arrows in the maze below indicate
where the insect will be and which direction it is facing after each time step in the optimal (fewest time steps)

plan {cost 5):

ECININET

H
L

Which ofthe following is a minimal state representation?

v C Atuple {x,y) giving the position of the insect.
@ Atuple {x,y) giving the position of the insect, plus the direction the insect is facing.
O Atuple (@, y) giving the position of the insect, plus an integer representing the number of

direction changes necessary on the aptimal path from the insect to the goal.
O Atuple (,y) giving the position ofthe insect, plus an integer representing the number oftime

steps that have pas

What is the size ofthe state space?
v o MN

C max(M,N)

o min{M,N)

@ 4MN

¢ (MN)?

o (MN)*

o gMN

QUESTION 9: HIVE MINDS: LOST AT NIGHT

[tis night and you control a single insect. You know the maze, but you do not know what square the insect
will start in. You must pose a search problem whose solution is an all-purpose sequence of actions such
that, after executing those actions, the insect will be on the exit square, regardless of initial pasition. The
insect executes the actions mind|
which would move it in a blocked direction, it will stay where it is. For example, in the maze below, moving

sly and does not know whether its moves succeed: if it uses an action

right twice guarantees that the insect will be at the exit regardless of its starting position.

Which of the following state representations could be used to solve this problem?
v O Atuple (&, y) representing the position ofthe insect.
O Atuple (&, y) representing the position of the insect, plus a list of all squares visited by the
insect.
C Aninteger t representing how many time steps have passed, plus an integer brepresenting how
many times the insect's motion has been blocked by a wall.
Alist of boolean variables, one for each position in the maze, indicating whether the insect could
peinthat position.

' Alist of all positions the insect has been in so far.

What is the size ofthe state space?
v O MN

o MNT

& oMN

o (MN)T
~ 2MN

' The state space is infinite.

Which of the following are admissible heuristics?
'V 4 I Total number of possible locations the insect might be in.
M The maximurm of Manhattan distances to the goal from each possible location the insect could
bein.
¥ The minimum of Manhattan distances to the goal from each possible location the insect could be
in.

QUESTION 10: EARLY GOAL CHECKING GRAPH SEARCH

Recall fram lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed «+ an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <+ INSERT(child-node, fringe)
end
end

With the above implementation a node that reaches a goal state may sit on the fringe while the algarithm
continues to search for a path that reaches a goal state. Let's cansider altering the algorithm by testing
whether a nodereaches a goal state when inserting into the fringe. Concretely, we add the line of code
highlighted below:

function EARLY-GOAL-CHECKING-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed + an empty set
fringe + INSERT{MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do

if fringe 1s empty then return failure
node +— REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node], problem) do
if GOAL-TEST(problem, STATE|[child-node]) then return child-node
fringe + INSERT(child-node, fringe)
end
end

Mow, we've produced a graph search algorithm that can find a solution faster. However, In doing so we
might have affected some properties of the algarithm. To explare the possible differences, consider the
example graph below.

Ifusing EARLY-GOAL-CHECKING-GRAPH-SEARCH with a Uniform Cost node expansion strategy, which path, if
any, will the algarithim return?
v & 5G

O SAG

' EARLY-GOAL-CHECKING-GRAPH-SEARCH will not find a solution path.

QUESTION 11: LOOKAHEAD GRAPH SEARCH

Recall from lecture the general algorithim for Graph Search reproduced below.

function Graru-SeEarcH(problem, fringe, strategy) return a solution, or failure
closed +— an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE[prablem]), fringe)
loop do

if fringe is empty then return failure

node ¢ REMOVE-FRONT(fringe, strategy)

if GOAL-TEST(problem, STATE[node]) then return node

end

Using GRAPH-SEARCH, when a node is expanded it is added to the closed set. This means that even if a node
is added to the fringe multiple timeas it will not be expanded more than once. Consider an alternative varsion
of GRAPH-SEARCH, LOOKAHEAD-GRAPH-SEARCH, which saves memory by using a "fringe-closed-set" keeping
track of which states have been on the fringe and only adding a child node to the fringe if the state ofthat
child node has not been added to it at some point. Concretely, we replace the highlighted block above with
the highlighted black below.

function LOOKAHEAD-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure
fringe-closed + an empty set
fringe + INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
add INITIAL-STATE[problem] to fringe-closed
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node

end

Mow, we've produced a maore memaory efficient graph search algorithm. However, in doing so, we might have
affected some properties of the algorithm. To explore the possible differences, consider the example graph
below.

10

If using LOOKAHEAD-GRAFPH-SEARCH with an A* node expansion strategy, which path will this algorithm
return? (We strongly encourage you to step through the execution of the algorithm on a scratch sheet of
paper and keep track of the fringe and the search tree as nodes get added to the fringe.)

v 0 S A—-D—=G
S —+B-+G
0 S A--C—=G
0 §S—-B—-D—G
0 S+A-+>B-+D—>G
Check

Assume you run LOOKAHEAD-GRAPH-SEARCH with the A* node expansion strategy and a consistent
heuristic, select all statements that are true.

v g ¥ The EXPAND function can be called at most once for each state.
M The algorithm is completa.

I The algorithm will return an optimal solution.

QUESTION 12: MEMORY EFFICIENT GRAPH SEARCH

Recall from lecture the general algorithim for GRAPH-SEARCH reproduced below.

function GrRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed « an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <+ REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE|node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node|, problem) do
[fringe + INSERT(child-node, fringe)
end

end

Using GRAPH-SEARCH, when a nodeis expanded it is added to the closed set. This means that even if a node
is added to the fringe multiple times it will not be expanded more than once. Consider an alternate version
of GRAPH-SEARCH, MEMORY-EFFICIENT-GRAPH-SEARCH, which saves memory by (a) not adding node nto the
fringe if STATE[1] is in the closed set, and (b checking if there is already a node in the fringe with last state
equal to STATE[A]. If =0, rather than simply inserting, it checks whether the old node ar the new node has the
cheaper path and then accordingly leaves the fringe unchanged or replaces the ald node by the new node.

By doing this the fringe needs less memory, however insertion becomes more computationally expensive.

More concretely, MEMORY-EFFICIENT-GRAPH-SEARCH is shown below with the changes highlighted.

function MEMORY-EFFICIENT-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed + an empty set
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe, strateqgy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do
Jringe + SPECIAL-INSERT(child-node, fringe, closed)

end
end

function SPECIAL-INSERT(node, fringe, closed) return fringe
if STATE[node| not in closed set then
if STATE[node| is not in STATE[fringe] then
fringe + INSERT(node, fringe)
else if STATE[node| has lower cost than cost of node in fringe reaching STATE[node] then
fringe +— REPLACE(node, fringe)

Mow, we've produced a more memaory efficient graph search algorithim. However, in doing so, we might have
affected some praperties ofthe algorithim. Assume yvou run MEMORY-EFFICIENT-GRAPH-SEARCH with the A*
node expansion strategy and a consistent heuristic, select all statements that are true.

v ' The EXPAND function can be called at most once for each state.
M The algorithm is complete.

M The algorithm will return an optirmal solution.

QUESTION 13: A*-CSCS

Recall thar a dictionary, also known as a hashmap, works as follows:
Inserting a key-value pair into a dictionary when the key is not already in the dictionary adds the pair to the
dictionary:

dict + an empty dictionary
dict[“key”] + “value”

print dict]“key”|

— “value”

Updating the value associated with a dictionary entry is done as follows:

dict[“key”] + “new value”
print dict[“key”]
— “new value”

We sawthat for A" graph search to be guaranteed to be optimal the heuristic needs to be consistent. In this
guestion we explore a new search procedure using a dictionary for the closed set, A -graph-search-with-
Cost-Sensitive-Closed-Set (A" - CSCS).

function A*-CSCS-GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure

Jringe + INSERT(MAKE-NODE(INITIAL-STATEproblem|), fringe)
loop do

if fringe is empty then return failure

node + REMOVE-FRONT(fringe, strateqy)

if GOAL-TEST(problem, STATE[node]) then return node

if sTATE[node] is not in closed

or child-node in EXPAND(node, problem) do
fringe + INSERT(child-node, fringe)
end
end

Rather than just inserting the last state of a node into the closed set, we now store the last state paired with
' A¥ - : . : :

the cost ofthe node. Whenever A" - C5CS considers expanding a node, it chacks the closed set. Only ifthe
last stateis not a key in the closed set, or the cost ofthe node is less than the cost associated with the state
in the closed set, the node is expanded.

* -
For regular A" graph search which ofthe following statements are true?
v ™ If his admissible, then A" graph search finds an optimal solution.

M If his consistent, then A" graph search finds an optimal solution.

Check

In each ofthe following parts, select all true statements about A*cscs
* - . .
v 4 M If his admissible, then A" - CSCS finds an optimal solution.

¥ - . .
M If his consistent, then A" - CSCS finds an optimal solution.

Check

. N A¥ - . FE.
If hois admissible, then A" - CSCS will expand at most as many nodes as 4™ tree search.

<
<

. . A¥ - . 4 *
M if his consistent, then A" - CSCS will expand at most as many nodes as A" tree search.

* R E A *
v 4 ™ If his admissible, then A - CSCS will expand at maost as many nodes as A graph search.

* E A%
M If his consistent, then A" - CSCS will expand at mast as many nodes as A graph search.

