[image: image1.png]QUESTION 1: SEARCH TREES
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may find it helpful to draw out the search tree on a pi





[image: image2.png]QUESTION 2: BREADTH-FIRST SEARCH

where Sisthe start and G is the goal state.
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Assume that ties are broken alphabel apartial plan S- be expanded before S->X->B and
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[image: image3.png]QUESTION 3: DEPTH-FIRST SEARCH

tate
and
cratch paper.

Consider a depth-first graph search on the graph below me
50 a partial plan S

4). You may find it helpful to execute the search on s

here S is the start and G is the goal

that ties are broken alphabetically

Awould be expanded before S

would be expanded before S

Select the final path returned by depth-first graph search. To select a path, click on each ofthe nodes in the
state-space graph that are part ofthe path.
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u correctly identified are marked with a solid green circle, and the state
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[image: image4.png]QUESTION 4: A* SEARCH

Considel

A*graph s
heuristic values. Assume that ties are broken alphabetical
before 5->X->B and 5->A->Z would be expanded before S

arch on the graph below. Arcs are labeled with action costs and states are labeled with

0 a partial plan

Awould be expanded

In what order are states expanded by A* graph search? You may find it helpful to execute the search on
scratch paper.
v © Start, A B C, D, Goal

€ Start, A, C Goal

@ Start, B, A D, C, Goal

€ Start, A, D, Goal

€ Start, A, B, Goal

© Start, B, A D, B, C, Goal

What path does A* graph search return?
O startACGoal

Start-B-Goal

Start-A-D-Goal
Start-A-B-Goal
Start-A-B-D-Goal

a0
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[image: image7.png]What is the size of the state space?

max(M,N)

Which ofthe following heuristics are admissible (if any)?

location to the hive.

« ¥ Manhattan distance from the inse:
P Euclidean distance from the ins ocation to the hive.

T Number of steps taken by the insect.




[image: image8.png]QUESTION 6: HIVE MINDS: SWARM MOVEMENT

You control K i

the s

m

cts, each of which has a ific target ending location 2 0 two in:

uare. In each time step all insects move simultaneously to a currently free squa
place); adjacent insects cannot swap in a single time step.
Which of the following is a minimal correct state space representation?

& Kruples ((z1,41),(%2.Y2)s. .., (K . Yx)) encoding the @ and y coordinate
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© Kruples ((z1,41),(%2.Y2)s. .., (K .yk)) encoding the @ and y coordinate

plus K hoolean variables indicating whether each in 1ext to another insect
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© Kruples ((z1,41),(%2.Y2)s. .., (K .Yk )) encoding the © and y coordinates of each insect,
plus MN booleans indicating which squares are currently occupied by an insect
© MN booleans (by , ba, ..., byrx) encoding whether or not an insect is in each square.
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Which ofthe following heuristics are admissible (if any)?
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[image: image11.png]Which of the following is a minimal state representation?

v

€ atuple (@,y) giving the position ofthe ins

© Atuple (z,) giving the position of the insact, plus a tuple of bird positions (€5, Y) giving the

location of each bird.
@ atuple (@, y) giving the position ofthe insect, plus an integer 7 = ¢ mod T wheret is the time
step.

€ atuple (@, y) giving the position ofthe insect, plus B boolean variables indicating whether each

ofthe birds

s carrying an in

ct pas

nger.

© Atuple (z,) giving the pe plus a tuple of bird positions (6.3 ) giving the
location of each bird, plus B boolean variables indicating whether each ofthe birds is carrying

sition of the ins

aninsect passenger.

Which ofthe following is the size of the state space?

(MN)B 128

Which ofthe following heuristics are admissible (if any)?

v

I Cost of optimal path to target in the simpler problem that has no birds.

Manhattan distance from the insect's current position to the target.

s current position to the nearest bird.

-
7 Manhattan distance from the ins
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Manhattan distance from the insect's current position to the target divided by three.





[image: image12.png]QUESTION 8: HIVE MINDS: JUMPING BUG
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square move is still 1 time unit, as s a turning move. As an example, the arrows in the maze below indicate
where the insect will be and which direction it is facing after each time step in the optimal (fewest time stej

plan (cost 5)

Which of the following is a minimal state
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The state space is infinite.

Which ofthe following are admissible heuristics?

v T Total number of possible locations the in

ct might be in.

¥ The maximum of Manhattan distances

o the goal from each po
bein.

¥ The minimum of Manhattan distances to the goal from each possible location the insect could be
in.




[image: image16.png]QUESTION 10: EARLY GOAL CHECKING GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a
closed ¢ an empty set
fringe  INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[nod] to closed
for child-node in EXPAND(STATE[nodd], problem) do
Jringe ¢ INSERT( child-node, fringe)
end

solution, or failure

end

With the above implementation a node that reaches a goal state may sit on the fringe while the algorithm
continues to search for a path that reaches a goal state. Let's consider altering the algorithm by testing
whether a node reaches a goal state when inserting into the fringe. Concretely, we add theline of code
highlighted below:

function EARLY-GOAL-CHECKING-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure
closed ¢ an empty set
Jfringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[nodc]) then return node
if STATE[nod] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE(nodc], problem) do
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[image: image18.png]QUESTION 11: LOOKAHEAD GRAPH SEARCH

Recall from lecture the general algorithm for Graph Search reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed < an empty set
Jringe + INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
if fringe is empty then return failure

MOVE-FRONT(fringe, strategy)
then return node

node
if GOAL-TEST(problem, STATE[node]

end

Using GRAPH-SEARCH, when a node is expanded it is added to the closed set. This means that even if a node
sion

is added to the fringe multiple times it will not be expanded more than once. Consider an alterna
of GRAPH-SEARCH, LOOKAHEAD-GRAPH-SEARCH, which saves mermory by using a "fringe-closed-set” keeping
track of which states have been on the fringe and only adding a child node to the fringe ifthe state of that
child node has not been added to it at some point. Concretely, we replace the highlighted block above with
the highlighted block below.
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Jringe-closed « an empty set

Jringe < INSERT(MAKE-NODE(1
add INITIAL-STATE[problem] to fringe
loop do
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osed

end
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Check

urun LOOKAHEAD-GRAPH-SEARCH with the A* node expansion strategy and a consistent
t all statements that are true.

¥ The EXPAND function can be called at most once for each state.
. The algorithm is complete.

T The algorithm will return an optimal solution.




[image: image21.png]QUESTION 12: MEMORY EFFICIENT GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed ¢ an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE problem]), fringc)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe, strategy)
nodd)) then return node
if STATE[nodd] is d then
add STATE[node] to closed
for child-node in EXPAND(STATE[nodd], problem) do
Jringe ¢ INSERT( child-node, fringe)
end

end

Using GRAPH-SEARCH, when a node s expanded it is added to the closed set. This means that even if a node
is added to the fringe multiple times it will not be expanded more than onc
of GRAPH-SEARCH, MEMORY-EFFICIENT-GRAPH-SEARCH, which sa
fringe if STATE[] is in the closed set, and (b) checking ifthere

Consider an alternate version
() not adding node nto the
v anode in the fringe with last state
equal to STATE[]. If so, rather than simply inserting, it checks whether the old node or the new node has the
cheaper path and then accordingly leaves the fringe unchanged or replaces the old node by the new node.

s memory &

alrea

By doing this the fringe needs less memory, however insertion becormes more compuitationally expensive.

More concretely, MEMORY-EFFICIENT-GRAPH-SEARCH is shown below with the changes highlighted.




[image: image22.png]function MEMORY-EFF]
closed « an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node  REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE([node], problem) do

end

NT-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure

end

function SPECIAL-INSERT(node, fringe, closed) return fringe
if STATE([node] not in closed set then
if STATE[node] is ot in STATE[fringc] then
fringe  INSERT(node, fringe)
else if STATE[node] has lower cost than cost of node in fringe reaching STATE[nodc] then
fringe ¢ REPLACE(node, fringe)

Now, we've produced a more memory efficient graph search algorithm. However, in doing so, we might have
affected some properties of the algorithm. Assume you run MEMORY-EFFICIENT-GRAPH-SEARCH with the A*
node expansion strategy and a consistent heuristic, select all statements that are true.

¥ The EXPAND function can be called at most once for each state.
. The algorithm is complete.

W The algorithm will return an optimal solution.




[image: image23.png]QUESTION 13: A*-CSCS

Recall that a dictionary, also known as a hashmap, works as follow:

Inserting a key-value pair into a dictionary when the key is not already in the dictionary adds the pair to the
dictionary:

dict « an empty dictionary
dict[“key”] « “value”

print dict[*key”]

- “value”

Updating the value associated with a dictionary entry is done as follows:

dict[*key”] < “new value”
print dict[“key”]
— “new value”

We sawthat for A* graph search to be guaranteed to be optimal the heuristic needs to be consistent. In this
question we explore a new search procedure using a dictionary for the closed set, A* -graph-search-with-
Cost-Sensitive-Closed-Set (A" - CSCS).

function A*-CSCS-GRAPH-SEARCH(problem, fringe, stralegy) return a solution, or failure

Jringe < INSERT(MAKE-NODE(INITIAL-STATE problem]), Jringe)
loop do

if fringe is empty then return failure

node < REMOVE-FRONT(fringe, strategy)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed

for child-node in EXPAND(node, problem) do
fringe  INSERT(child-node, fringe)
end
end
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For regular A" graph search which ofthe following statements are true?

[ ithisadmissible, then A* graph search finds an optimal solution.

P it his consistent, then A* graph search finds an optimal solution.

Check

t all true statements about A*-CSCS

In each of the following part

« ¥ Ifhisadmissible, then A*- CSCS finds an optimal solution.

F it his consistent, then A" - CSCS finds an optimal solution.

Check

« ¥ Ifhisadmissible, then A®- CSCS will expand at most as many nodes as A" tree search.

F i his consistent, then A* - CSCS will expand at most as many nodes as A tree search.
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« [ Ifhisadmissible, then A*- CSCS will expand at most as many

F i his consistent, then A" - CSCS will expand at most as many nodes as A* graph search.
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