[image: image1.png]QUESTION 1: SEARCH TREES

How many nodes are n the complete search tree for the given state space graph? The start states S. You

of paper

may find it helpful to draw out the search tree on a pi

[image: image2.png]QUESTION 2: BREADTH-FIRST SEARCH

where Sisthe start and G is the goal state.

Consider a breadth-first graph search on the graph belo
Assume that ties are broken alphabel apartial plan S- be expanded before S->X->B and
5->A->Z would be expanded before S>B-A). You may find it helpful to & the search on scratch paper
Select the final path returned by breadth-first graph search. To s

the state-space graph that are part of the path

o
\

©

ith a solid green cif

le, and the states you identified incorrectly

lentified are markes

e

States you correctly ic

are marked with a dotted

[image: image3.png]QUESTION 3: DEPTH-FIRST SEARCH

tate
and
cratch paper.

Consider a depth-first graph search on the graph below me
50 a partial plan S

4). You may find it helpful to execute the search on s

here S is the start and G is the goal

that ties are broken alphabetically

Awould be expanded before S

would be expanded before S

Select the final path returned by depth-first graph search. To select a path, click on each ofthe nodes in the
state-space graph that are part ofthe path.

(f) é)
u correctly identified are marked with a solid green circle, and the state

v

State:

uidentified incorrectly

are marked with a dotted red circle.

[image: image4.png]QUESTION 4: A* SEARCH

Considel

A*graph s
heuristic values. Assume that ties are broken alphabetical
before 5->X->B and 5->A->Z would be expanded before S

arch on the graph below. Arcs are labeled with action costs and states are labeled with

0 a partial plan

Awould be expanded

In what order are states expanded by A* graph search? You may find it helpful to execute the search on
scratch paper.
v © Start, A B C, D, Goal

€ Start, A, C Goal

@ Start, B, A D, C, Goal

€ Start, A, D, Goal

€ Start, A, B, Goal

© Start, B, A D, B, C, Goal

What path does A* graph search return?
O startACGoal

Start-B-Goal

Start-A-D-Goal
Start-A-B-Goal
Start-A-B-D-Goal

a0

[image: image5.png]HIVE MINDS

s in arectangular ma

are a commor

The next five questior tup. You control one or more in

hown in the

environment with dimensions M < N, a

currently free, or the

ct can move into an adjacent square ifthat squar
may be blocked by walls, but the map is known. Optimality is

At each time

ep, anins

ma
always in terms of time steps; all actions have cost 1 regardless of the number of insects moving or

ay in its current location. Squar

where they move.

neral

ance ofthe problem, not simply for the

ould an:

For each ofthe five questior

example maf

[image: image6.png]QUESTION 5: HIVE MINDS: LONELY BUG

You control a

also kne

Which of the following i

v

wn

-
@
-

Anir

Atuple (2,) enc

Atuple (z,y, d) encoding the insect's and

15ect as shown inthe m

he hive. There are no other inse

ze bel

cts moving ar

which must reach a d
ound

nated target location X,

weger d e

the hive.

This ¢

annot be represented as

ling the and y coordinate:

earch problem

i/ correct state space representation?

ding the Manhattan distance to the hive.

ofthe insect

ordinates

Il as the Manhattan distance to

[image: image7.png]What is the size of the state space?

max(M,N)

Which ofthe following heuristics are admissible (if any)?

location to the hive.

« ¥ Manhattan distance from the inse:
P Euclidean distance from the ins ocation to the hive.

T Number of steps taken by the insect.

[image: image8.png]QUESTION 6: HIVE MINDS: SWARM MOVEMENT

You control K i

the s

m

cts, each of which has a ific target ending location 2 0 two in:

uare. In each time step all insects move simultaneously to a currently free squa
place); adjacent insects cannot swap in a single time step.
Which of the following is a minimal correct state space representation?

& Kruples ((z1,41),(%2.Y2)s. .., (K . Yx)) encoding the @ and y coordinate

v

© Kruples ((z1,41),(%2.Y2)s. .., (K .yk)) encoding the @ and y coordinate

plus K hoolean variables indicating whether each in 1ext to another insect

sma

cupy
stayin

re (ol

s of each insect

s of each insect,

© Kruples ((z1,41),(%2.Y2)s. .., (K .Yk)) encoding the © and y coordinates of each insect,
plus MN booleans indicating which squares are currently occupied by an insect
© MN booleans (by , ba, ..., byrx) encoding whether or not an insect is in each square.

[image: image9.png]What is the size of the state space?

T

" a0 0

Which ofthe following heuristics are admissible (if any)?

v

o

<

Surm of Manhattan distances from each insect's location to its target location.
Sum of co:

of optimal paths for each in
environment, unobstructed by the other insects.

tto

oal if it were acting alone in the

Max of Manhattan distances from each ins

's location to its target location.
Max of costs of optimal paths for each insect to its goal ifit were acting alone in the environment,
unobstructed by the other insects.

Number ofinsects that have nof

t reached their target location.

[image: image10.png]QUESTION 7: HIVE MINDS: MIGRATING BIRDS

You again control a single ir

ect, but there are B birds flying along known paths. Specifically, at timet each
bird bwill be at position (4 (£), 45 (£)). The tuple of bird positions repeats with period T B
up to 3 squares per time step. An example i 1 below, but keep in mind that you should ar
general instance of the problem, not simply the map and path

might move

rfor a

wn below

Your i vith birds

ct share: uare with a bird, the ir

are squar and it can even hitch a ride on them! On any time step that your

in

ect may either move as normal or move directly to the bir

1ext

location (either action h

5t 1, even ifthe bird travels farther than one square)

[image: image11.png]Which of the following is a minimal state representation?

v

€ atuple (@,y) giving the position ofthe ins

© Atuple (z,) giving the position of the insact, plus a tuple of bird positions (€5, Y) giving the

location of each bird.
@ atuple (@, y) giving the position ofthe insect, plus an integer 7 = ¢ mod T wheret is the time
step.

€ atuple (@, y) giving the position ofthe insect, plus B boolean variables indicating whether each

ofthe birds

s carrying an in

ct pas

nger.

© Atuple (z,) giving the pe plus a tuple of bird positions (6.3) giving the
location of each bird, plus B boolean variables indicating whether each ofthe birds is carrying

sition of the ins

aninsect passenger.

Which ofthe following is the size of the state space?

(MN)B 128

Which ofthe following heuristics are admissible (if any)?

v

I Cost of optimal path to target in the simpler problem that has no birds.

Manhattan distance from the insect's current position to the target.

s current position to the nearest bird.

-
7 Manhattan distance from the ins
"

Manhattan distance from the insect's current position to the target divided by three.

[image: image12.png]QUESTION 8: HIVE MINDS: JUMPING BUG

Your s

nsect is alonein the maz:

again. This time, it has s egs that can take it as far as you want in
ht line in each time step. The disadvantage of these make turning slower, so now it
takes the insect a time step to change the direction it is facing. Moving v squares requires that
intermediate squares passed through, a Juare, currently be empty. The cost of a multi-
square move is still 1 time unit, as s a turning move. As an example, the arrows in the maze below indicate
where the insect will be and which direction it is facing after each time step in the optimal (fewest time stej

plan (cost 5)

Which of the following is a minimal state

v © Atuple (x,y) giving the position of the insect
@ Atuple (z,) giving the position of the insect, plus the direction the insect is facing.
© Atuple (,y) giving the position of the insect, plus an integer representing the number of

direction chan;

necessary on the optimal path from the insect to the goal

© Atuple (z,y,

ing the position ofthe insect, plus an integer representing the number oftime

ps that have pa

[image: image13.png]What is the size of the state space?

v ©MN

"0 A

[image: image14.png]QUESTION 9: HIVE MINDS: LOST AT NIGHT

It is night anc g ct. You knowthe maze, but you

o not know what square the ins

il start in. You must po se solution is an allpurpose sequence of actions stch
that, after executing thos will be on the exit square, regardle sition. The
ecutes the actions mind oes not know whether its move an action

uld move it in a blockes

tion, it will stay where it is. For example, in the m,
ofi

ze below, moving

right twice guarantees that the ins

twill be at the exit regar

ion.

tarting p

entation uld be u:

Which of the following state repr Ive this problem?

enting the position of the i

v © Atuple (x,y) repre:
© atuple (2, y) repre
T

enting the position of the ins

ct, plus alist of all squares 1 by the

ir

€ Aninteger ¢ representing how many time s have passed, plus an integer b representing how

many times the ins

motion has been blocked by a wall

of boolean variabl
be in that posi

one for each position in the maze, indicating whether the insect could

ion.

© Alist of all positions the insect has been in so far

[image: image15.png]What is the size of the state space?

a0

" a N

The state space is infinite.

Which ofthe following are admissible heuristics?

v T Total number of possible locations the in

ct might be in.

¥ The maximum of Manhattan distances

o the goal from each po
bein.

¥ The minimum of Manhattan distances to the goal from each possible location the insect could be
in.

[image: image16.png]QUESTION 10: EARLY GOAL CHECKING GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a
closed ¢ an empty set
fringe INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[nod] to closed
for child-node in EXPAND(STATE[nodd], problem) do
Jringe ¢ INSERT(child-node, fringe)
end

solution, or failure

end

With the above implementation a node that reaches a goal state may sit on the fringe while the algorithm
continues to search for a path that reaches a goal state. Let's consider altering the algorithm by testing
whether a node reaches a goal state when inserting into the fringe. Concretely, we add theline of code
highlighted below:

function EARLY-GOAL-CHECKING-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure
closed ¢ an empty set
Jfringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[nodc]) then return node
if STATE[nod] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE(nodc], problem) do

[image: image17.png]pro
might have affe
example graph belc

1 a graph search algorithm that can find a solution faster. However, In doing so we

ible differen

me properties of the algorithm. To explore the po

Ifus

g EARLY-GOAL-CHECKING-GRAPH-SEARCH with a Uniformm C
Il the algorithm return?

¢ 56
© SAG

© EARLY-GOAL-CHECKING-GRAPH-SEARCH will not find a solution path.

st node expansion strategy,

any

Bottom of Form

Bottom of Form

[image: image18.png]QUESTION 11: LOOKAHEAD GRAPH SEARCH

Recall from lecture the general algorithm for Graph Search reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed < an empty set
Jringe + INSERT(MAKE-NODE(INITIAL-STATE problem]), fringe)
loop do
if fringe is empty then return failure

MOVE-FRONT(fringe, strategy)
then return node

node
if GOAL-TEST(problem, STATE[node]

end

Using GRAPH-SEARCH, when a node is expanded it is added to the closed set. This means that even if a node
sion

is added to the fringe multiple times it will not be expanded more than once. Consider an alterna
of GRAPH-SEARCH, LOOKAHEAD-GRAPH-SEARCH, which saves mermory by using a "fringe-closed-set” keeping
track of which states have been on the fringe and only adding a child node to the fringe ifthe state of that
child node has not been added to it at some point. Concretely, we replace the highlighted block above with
the highlighted block below.

[image: image19.png]function LOOKAHEAD-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure
Jringe-closed « an empty set

Jringe < INSERT(MAKE-NODE(1
add INITIAL-STATE[problem] to fringe
loop do

Jringe is empty then return failure

node < REMOVE-FRONT(fringe, strategy)

if GOAL-TEST(problem, STATE[node]) then return node

STATE[problem]), fringe)
osed

end

might have
nsider the example graph

[image: image20.png]Ifusing LOOKAHEAD-GRAPH-SEARCH with an A* node expansion strate;
return? (We strongly encourag

which path will this algorithm
Ut step through the execution of the algorithm on a scratch sheet of

paper and keep track ofthe fringe and the search tree as nodes get added to the fringe.)

v 834D G
©8§3BG
8 s ACHG
©8§3B+DG
©§+4+B+DG
Check

urun LOOKAHEAD-GRAPH-SEARCH with the A* node expansion strategy and a consistent
t all statements that are true.

¥ The EXPAND function can be called at most once for each state.
. The algorithm is complete.

T The algorithm will return an optimal solution.

[image: image21.png]QUESTION 12: MEMORY EFFICIENT GRAPH SEARCH

Recall from lecture the general algorithm for GRAPH-SEARCH reproduced below.

function GRAPH-SEARCH(problem, fringe, strategy) return a solution, or failure
closed ¢ an empty set
fringe « INSERT(MAKE-NODE(INITIAL-STATE problem]), fringc)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe, strategy)
nodd)) then return node
if STATE[nodd] is d then
add STATE[node] to closed
for child-node in EXPAND(STATE[nodd], problem) do
Jringe ¢ INSERT(child-node, fringe)
end

end

Using GRAPH-SEARCH, when a node s expanded it is added to the closed set. This means that even if a node
is added to the fringe multiple times it will not be expanded more than onc
of GRAPH-SEARCH, MEMORY-EFFICIENT-GRAPH-SEARCH, which sa
fringe if STATE[] is in the closed set, and (b) checking ifthere

Consider an alternate version
() not adding node nto the
v anode in the fringe with last state
equal to STATE[]. If so, rather than simply inserting, it checks whether the old node or the new node has the
cheaper path and then accordingly leaves the fringe unchanged or replaces the old node by the new node.

s memory &

alrea

By doing this the fringe needs less memory, however insertion becormes more compuitationally expensive.

More concretely, MEMORY-EFFICIENT-GRAPH-SEARCH is shown below with the changes highlighted.

[image: image22.png]function MEMORY-EFF]
closed « an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node REMOVE-FRONT(fringe, strategy)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE([node], problem) do

end

NT-GRAPH-SEARCH (problem, fringe, strategy) return a solution, or failure

end

function SPECIAL-INSERT(node, fringe, closed) return fringe
if STATE([node] not in closed set then
if STATE[node] is ot in STATE[fringc] then
fringe INSERT(node, fringe)
else if STATE[node] has lower cost than cost of node in fringe reaching STATE[nodc] then
fringe ¢ REPLACE(node, fringe)

Now, we've produced a more memory efficient graph search algorithm. However, in doing so, we might have
affected some properties of the algorithm. Assume you run MEMORY-EFFICIENT-GRAPH-SEARCH with the A*
node expansion strategy and a consistent heuristic, select all statements that are true.

¥ The EXPAND function can be called at most once for each state.
. The algorithm is complete.

W The algorithm will return an optimal solution.

[image: image23.png]QUESTION 13: A*-CSCS

Recall that a dictionary, also known as a hashmap, works as follow:

Inserting a key-value pair into a dictionary when the key is not already in the dictionary adds the pair to the
dictionary:

dict « an empty dictionary
dict[“key”] « “value”

print dict[*key”]

- “value”

Updating the value associated with a dictionary entry is done as follows:

dict[*key”] < “new value”
print dict[“key”]
— “new value”

We sawthat for A* graph search to be guaranteed to be optimal the heuristic needs to be consistent. In this
question we explore a new search procedure using a dictionary for the closed set, A* -graph-search-with-
Cost-Sensitive-Closed-Set (A" - CSCS).

function A*-CSCS-GRAPH-SEARCH(problem, fringe, stralegy) return a solution, or failure

Jringe < INSERT(MAKE-NODE(INITIAL-STATE problem]), Jringe)
loop do

if fringe is empty then return failure

node < REMOVE-FRONT(fringe, strategy)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed

for child-node in EXPAND(node, problem) do
fringe INSERT(child-node, fringe)
end
end

[image: image24.png]state of a node into the

Rather than just inserting the las
the cost ofthe node. Whenever A - CSCS considers expanding a nod

orethelast state paired with
d set. Onlyifthe

han the cost associated with the state

he

ed set, or the cost ofthe node is le:

last state s not a key in the cl

in the closed set, the node is expanded.
For regular A" graph search which ofthe following statements are true?

[ithisadmissible, then A* graph search finds an optimal solution.

P it his consistent, then A* graph search finds an optimal solution.

Check

t all true statements about A*-CSCS

In each of the following part

« ¥ Ifhisadmissible, then A*- CSCS finds an optimal solution.

F it his consistent, then A" - CSCS finds an optimal solution.

Check

« ¥ Ifhisadmissible, then A®- CSCS will expand at most as many nodes as A" tree search.

F i his consistent, then A* - CSCS will expand at most as many nodes as A tree search.

[image: image25.png]odes as A" graph search.

« [Ifhisadmissible, then A*- CSCS will expand at most as many

F i his consistent, then A" - CSCS will expand at most as many nodes as A* graph search.

Bottom of Form

