
Past Exam Questions: Games

1 Nearly Zero Sum Games
The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in
which for all terminal states s, the utilities for players A (MAX) and B (MIN) obey UA(s) +UB(s) = 0. In the
zero sum case, we know that UA(s) = −UB(s) and so we can think of player B as simply minimizing UA(s).

In this problem, you will consider the non zero-sum generalization in which the sum of the two players’ utilities
are not necessarily zero. Because player A’s utility no longer determines player B’s utility exactly, the leaf
utilities are written as pairs (UA;UB), with the first and second component indicating the utility of that leaf to
A and B respectively. In this generalized setting, A seeks to maximize UA, the first component, while B seeks
to maximize UB , the second component.

(0,-2)(-1,2)(1,1) (-2,0) (0,1) (-1,3)

1. Propagate the terminal utility pairs up the tree using the appropriate generalization of the minimax al-
gorithm on this game tree. Fill in the values (as pairs) at each of the internal node. Assume that each
player maximizes their own utility.

(1,1) (-1,2) (-1,3)

(1,1)

(0,-2)(-1,2)(1,1) (-2,0) (0,1) (-1,3)

2. Briefly explain why no alpha-beta style pruning is possible in the general non-zero sum case.
Hint : think first about the case where UA(s) = UB(s) for all nodes.

The values that the first and second player are trying to maximize are independent, so we no longer have
situations where we know that one player will never let the other player down a particular branch of the
game tree.

For instance, in the case where UA = UB , the problem reduces to searching for the max-valued leaf, which
could appear anywhere in the tree.

1

3. For minimax, we know that the value v computed at the root (say for player A = MAX) is a worst-case
value. This means that if the opponent MIN doesn’t act optimally, the actual outcome v′ for MAX can
only be better, never worse than v.

In the general non-zero sum setup, can we say that the value UA computed at the root for player A
is also a worst-case value in this sense, or can A’s outcome be worse than the computed UA if B plays
sub-optimally? Briefly justify.

A’s outcome can be worse than the computed vA. For instance, in the example game, if B chooses (0,−2)
over (1, 1), then A’s outcome will decrease from 1 to 0.

4. Now consider the nearly zero sum case, in which |UA(s) + UB(s)| ≤ ε at all terminal nodes s for some ε
which is known in advance. For example, the previous game tree is nearly zero sum for ε = 2.

In the nearly zero sum case, pruning is possible. Draw an X in each node in this game tree which could be
pruned with the appropriate generalization of alpha-beta pruning. Assume that the exploration is being
done in the standard left to right depth-first order and the value of ε is known to be 2. Make sure you
make use of ε in your reasoning.

We can prune the node (−1, 2). See answers to the next two problems for the reasoning.

5. Give a general condition under which a child n of a B node (MIN node) b can be pruned. Your condition
should generalize α-pruning and should be stated in terms of quantities such as the utilities UA(s) and/or
UB(s) of relevant nodes s in the game tree, the bound ε, and so on. Do not worry about ties.

The pruning condition is Ub > ε− α. This is equivalent to the standard pruning condition Ub > −α, but
with an additional requirement ε on Ub before pruning occurs.

6. In the nearly zero sum case with bound ε, what guarantee, if any, can we make for the actual outcome u′

for player A (in terms of the value UA of the root) in the case where player B acts sub-optimally?

u′ ≥ UA − 2ε

2

2 Minimax and Expectimax
In this problem, you will investigate the relationship between expectimax trees and minimax trees for zero-sum
two player games. Imagine you have a game which alternates between player 1 (max) and player 2. The game
begins in state s0, with player 1 to move. Player 1 can either choose a move using minimax search, or expectimax
search, where player 2’s nodes are chance rather than min nodes.

1. Draw a (small) game tree in which the root node has a larger value if expectimax search is used than if
minimax is used, or argue why it is not possible.

We can see here that the above game tree has a root value of 1 for the minimax strategy. If we instead
switch to expectimax and replace the min nodes with chance nodes, the root of the tree takes on a value
of 50 and the optimal action changes for MAX.

2. Draw a (small) game tree in which the root node has a larger value if minimax search is used than if
expectimax is used, or argue why it is not possible.

Optimal play for MIN, by definition, means the best moves for MIN to obtain the lowest value possible.
Random play includes moves that are not optimal. Assuming there are no ties (no two leaves have the
same value), expectimax will always average in suboptimal moves. Averaging a suboptimal move (for
MIN) against an optimal move (for MIN) will always increase the expected outcome.

With this in mind, we can see how there is no game tree where the value of the root for expectimax is
lower than the value of the root for minimax. One is optimal play – the other is suboptimal play averaged
with optimal play, which by definiton leads to a higher value for MIN.

3

3. Under what assumptions about player 2 should player 1 use minimax search rather than expectimax search
to select a move?

Player 1 should use minimax search if he/she expects player 2 to move optimally.

4. Under what assumptions about player 2 should player 1 use expectimax search rather than minimax
search?

If player 1 expects player 2 to move randomly, he/she should use expectimax search. This will optimize
for the maximum expected value.

5. Imagine that player 1 wishes to act optimally (rationally), and player 1 knows that player 2 also intends
to act optimally. However, player 1 also knows that player 2 (mistakenly) believes that player 1 is moving
uniformly at random rather than optimally. Explain how player 1 should use this knowledge to select
a move. Your answer should be a precise algorithm involving a game tree search, and should include a
sketch of an appropriate game tree with player 1’s move at the root. Be clear what type of nodes are at
each ply and whose turn each ply represents.

An alternative approach is to describe P2 as a chance node, where the probability distribution involves a
minimax calculation over the remaining game tree.

4

