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Abstract

An option is a financial instrument that allows the holder to buy or sell an underlying security
in the future at an agreed strike or price set today. European options are often priced under the
assumption of constant interest rates as seen in the Black-Scholes (1973) model.

In interest rate markets however the underlying security is an interest rate, which cannot be as-
sumed constant. Likewise bond markets have a similar requirement. To relax such an assump-
tion option payoffs and prices can be evaluated as the expectation of a stochastic martingale
process.

In this paper we illustrate how to use the change of measure technique to evaluate the dynamics
of a stochastic process. Firstly we discuss the preliminaries, namely Martingale measures and
numeraires. Secondly we model interest rates as a Vasicek short rate process. Finally we
outline how to apply a change of measure technique, where it can be seen that a change of
measure to the terminal-forward measure allows us to evaluate model dynamics and simplify
the calculation.

1 Martingale Measures & Numeraires

Consider any option with a generic payoff denoted Hp. The martingale representation the-
orem provides us with a framework to evaluate the price of an option using the below formula,
whereby the price V; at time ¢ of such an option is evaluated with respect to a numeraire N and
corresponding probability measure Q.

Vi

Hr
N, E [NT g ’*] M
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which can also be written as ”
Vi = N, E® {—Tm} (2)
Nrp

where

V; is the option price evaluated at time ¢

N, is the numeraire evaluated at time ¢

[EQ~[] is an expectation with respect to the measure of numeraire N (discussed below)
‘Hr is a generic option payoff evaluated at time 7'

Under the *Martingale Representation’ approach an arbitrage free portfolio is formed to replic-
ate the option using both the underlying and numeraire, which is a tradable asset. Together the
underlying and numeraire form a perfect hedge. If the numeraire is to be part of a hedge port-
folio it must be a positive tradable asset, which pays no dividends. The later condition ensures
that we have a smooth continuous price process without jumps.

Each numeraire can be represented as a stochastic process' and therefore has a probability
measure assigned to it. The probability measure corresponds to the probability density function
governing the likelihood of price changes of the numeraire.

The numeraire also determines the denomination of the option price V; or pricing units. If for
example the option price is 100, the numeraire determines the units, e.g. pounds, euros, dollars.
The numeraire is typically a cash instrument or bond, however it may be a completely different
instrument such as, for example, a commodity or stock, provided it pays no dividends.

The most popular choice of numeraire would be a savings account, sometimes referred to as
a cash bond, the associated equivalent probability measure is called the risk-neutral measure
and denoted Q. A dollar savings account numeraire would denominate option prices V; in
dollars and would imply that the option replicating portfolio would comprise of the underlying
and a dollar cash bond.

1.1 Savings Account Numeraire

Under the martingale representation theorem an option price is unique regardless of the choice
of numeraire. Therefore option prices can be evaluated using any numeraire, subject to the
conditions above, namely that the numeraire is a positive tradable non-dividend paying asset.
However in many cases it is not convenient and in some cases not possible to evaluate the
expectation term in equations (1) and (2).

A savings account” is formed by holding cash in a risk-free account that accrues continuously
compounded interest. Consider such a savings account process B> with dynamics

By = el mudu 3)

! One could also consider a numeraire as a random variable with a corresponding probability density function.

2 A savings account can also be thought of as investing in a cash bond or depositing funds in a savings account,
which is assumed risk-free and accumulating continuously compounded interest.

3Note that time t represents the filtration time or pricing date, T the maturity of the cash bond and (T — t) the
amount of time of the savings account funds are held on deposit.
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or in difference form
dBt = TtBtdt (4)

Applying the martingale representation formula using the savings account numeraire gives

Vi o |Hr

Rerranging this gives

H
Vi = BE® [B—;m}

B
—EQ |2t
V;t =K [BT,HTLF]&} (6)

V, = B9 [e_ I du'HﬂE}

The rates process r,, in equation (6) under the savings account numeraire is stochastic and not
trivial to evaluate, so at this point consider a change of numeraire.

The price of a derivative is invariant regardless of the choice of numeraire and therefore a
numeraire can be chosen to simplify the calculation of the Expectation term within equation
(5). Other considerations relating to the choice of measure include:

1. Analytical Tractability
Can a closed form solution be reached?

2. Implementation
Is the solution compatible with a recombining tree* and monte carlo pricing methods?

3. Behaviour
Does the solution exhibit mean reversion>?

4. Dynamics
Do the solution dynamics imply positive interest rates at all times?
Can rates go negative®?

1.2 Choice of Measure

Firstly recall from section (1) that our replication portfolio consists of an underlying and a nu-
meraire, and note that the underlying and numeraire could both be similiar instruments, both

“Trees allow us allow us to price American options.

SMean Reversion is an empirical market observation whereby over time certain instruments, such as interest
rates, revert back to a mean average level.

®Interest rates can certainly be negative, but not as frequent or for such prolonged periods as suggested by a
normal distribution say.



bond instruments perhaps. Secondly remembering that a measure or numeraire must be a trad-
able instrument, consider the tradable instruments available for selection.

In the interest rate market rates are derived from fixed income bonds. Typically these form
the basis for our choice of numeraire. There are several bond instruments to choose from and
the most popular choice is the savings account or cash bond as outlined above in section (1.1).
Other choices of numeraire and measure are outlined below.

1.2.1 Risk-Neutral Measure, Q

The tradable numeraire is a riskless cash bond or rolling savings account. The associated meas-
ure is called the risk-neutral measure Q. This measure plays a key role in the Black-Scholes
(1993) model.

1.2.2 Terminal-Forward Measure, Q1

The tradable numeraire is a zero coupon bond of maturity 7', which is chosen to match the
maturity of the underlying instrument to be priced. Hence the associated measure is called the
terminal-forward measure Q7. This numeraire is used to price bonds, forwards and the like.

1.2.3 Forward Measure, Q

The tradable numeraire is a zero coupon bond of maturity S, where S > 7. That is to say
the numeraire maturity S is greater than the maturity of the underlying instrument 7". The
associated measure is called the forward measure Q.

1.2.4 Annuity Measure, Q 4
The tradable numeraire is an annuity. The associated measure is called the annuity measure Q 4.
This numeraire is used to price swaptions.

Finally for completeness and reference purposes we should mention the real-world measure P,
which is not typically used for derivatives pricing.

1.2.5 Real-World Measure, P

The real-world measure PP gives the real-world probability of an event occurring. If an experi-
ment were to be repeated many times this probability measure would be helpful in determining
the long term average result.

Example: Real-World Measure
For example if we wanted to know the probability of rolling a fair die and landing on the number



six. The real-world probability gives P(die = 6) = %, but this result would only be of use if we
were to repeat the experiment rolling the die many times.

That is to say the number 6 should appear on average one time out of six. For a small number
of die throws this often not the case. However as we increase the number of die throws we
converge to the result and more so as the number of throws increases to infinity.

As far as derivatives pricing is concerned the real-world measure [P provides an indication of
the long term average price of a derivative but would not give an arbitrage free price.

1.3 Change of Measure
To change between measures the Radon-Nikodym Derivative is used, which is often encountered
when changing from the real-world measure to the risk-neutral measure and denoted’ %.

Consider two numeraires N and M with associated equivalent martingale measures Qv and
Qas. Under the Qy measure we have

N,
Vim N | B2 17| < B9 | Sl ™
and under the Q;; measure we have
H M,
Vi = ME® {left} = E% {M;Hﬂft} ®)
equating equations (7) and (8) gives
N, M,
EO {HTN—;\E} = E% {%Tﬁ;m} ©)

Stochastic Terms

The Nt and My terms in equations ( 7 ) to ( 9 ) above are stochastic and must remain within
the expectation operator, however Ny and M, are known values at the filtration time t and could
be treated as constants.

The Radon-Nikodym derivative is a ratio of probability measures (i%%) such that we divide

(and eliminate) the old measure and multiply (and introduce) the new measure.

We define the Radon-Nikodym derivative of dQQ,; with respect to dQy as below

M _ <MM> = (Mt &) (10)
dQy B (%) B Mr N

T

Twhere dQ represents the risk-neutral measure we are changing to and dP is the real-world measure we are
changing from.



multiplying the left-hand side LHS of equation (9) by the Radon-Nikodym derivative changes
the LHS measure from Qy to Qy; as demonstrated below

Ny dQyy M, Np M,
Qup | 2t M Qur — 7Qum kil 2
E [NT i HT‘./T,;| E |:HTNT (MT N, ) ‘th‘| E [HTMT‘JT";| (11)

which leads to and implies
N, dQu
T dQy

Equation (12) demonstrates how to move from one measure (Q to another Q,;, namely from
equation (7) to (8).

EQ l%%ﬂft} = EQ™ { ’Hﬂ]—}} (12)
T

2 Summary of the Vasicek Short Rate Model

In our previous paper [4] An Overview of the Vasicek Short Rate Model’ the Vasicek model
was outlined and reviewed, below we summarize the the main points.

2.1 Short Rate Process

The Vasicek short rate model has an SDE with the following functional form

dry = (0 — ar,)dt + od B, (13)
which can also be represented as

dry = a(b—ry)dt + odB, (14)

where

a = Speed of Mean Reversion, 0 < a <1
b = Mean Reversion Level

0 =ab

r; = Short Rate at time, t

o = Short Rate Volatility

B; = Brownian Motion Process at time, t

2.2 Short Rate Solution

The solution to the Vasicek SDE in equation (13) follows, whose derivation can be found in
[4]. It is important to note that this solution is under the savings account numeraire with the
corresponding risk-neutral measure Q.

0 t
ry=e *tp 4 2 (1 — efa(tfs)) + U/ e~ 4B, (15)
a -

uU=s



2.3 Dynamics

The distribution of the short rate solution in equation (15) is primarily determined by the
Brownian process, which is Gaussian having dynamics B; ~ N (0, t).

2
rth(ﬁ U) (16)

a,’ 2a

2.4 Why Change to the Terminal Forward Measure?

The price of an option at time t using the numeraire /V with a corresponding risk-neutral measure
Qy is defined in equations (1) and (2) as

Vi = NE® [%IE} (17
T

Recalling that the option price is measure invariant®, careful attention is paid to the (%—;) term

within the expectation of (17) above and a measure is chosen to simplify the expectation as
much as possible.

Using the cash account measure (Q with a cash bond numeraire B; as defined in equations (3)
and (4) the option price is determined as

Vi = B EQ{&|E}:EQ[ Hr

T
ST r(u) du |]:t} =E [6_ et du,HTlth (18)

In this scenario, when using the cash account measure, the bond term B; outside the expectation
in (18) simplifies to unity i.e. B; = 1. However the bond term B inside the expectation remains
and is stochastic. This stochastic term cannot be factored outside of the expectation operator.
The cash measure does not simplify the calculation.

Under the terminal forward measure Q7 all bonds P(t,T") both pure discount and coupon bear-
ing mature at par’. Therefore at maturity P(7,7) = 1 and changing to this measure would
conveniently lead to a simplified expression for the option price as follows.

Hr
P(T,T)
——

=1

Vi = P(t, T)E®" | Fi| = P(t, T)E®" [Hr|F] (19)

Specifically for a European style option the payoff H; would be specified as

Hp = maz (6 (P(t,T) — K),0) (20)

8 That is the price is constant regardless of the choice of numeraire. Furthermore since the choice of measure
is discretionary, one typically selects a measure to simplify the calculation.
This means that at maturity we receive back 100% of the bond’s notional or face value.



or equivalently
He = ¢ (P(t,T) — K)* @1
where
+1 for a call option

¢ = { . (22)

—1  for a put option

Using the terminal forward measure Q it follows that the European option price V; at time ¢
on an underlying bond P(t,T) having maturity 7" with ¢ < T is

V, = P(t,T)E® [¢(P(t,T) — K)" |F] (23)

This expression is easier to evaluate than that under the cash measure.

2.5 How to Change to the Terminal Forward Measure

Having established that a switch of measure to the terminal forward measure is desirable, atten-
tion is drawn to the fact that at this point the solution to the Vasicek SDE has been determined
under the cash account measure. Via the change of measure process we proceed to demonstrate
how to change to the terminal measure and follow-up by determining the Vasicek solution under
this new measure.

The risk-neutral measure Q is associated with the risk free cash account numeraire B;. Consider
another general numeraire [V, with the associated equivalent martingale measure Qv and the
below dynamics.

Notation
To avoid confusion, between the cash bond and Brownian motion, W has been used in this
section to denote the Brownian / Wiener process instead of the usual B.

dBt = TtBtdt (24)
AN, = 1 N,dt + o N,dW 2 (25)

Using Itd6’s Lemma to evaluate the dynamics for the ratio of B to N gives

B, 1 1
d(M) BM(M)+(N)d& (20)

Let X; =d ( > and evaluate using It6’s Lemma

dX, 1d*X,

2
AXe = JrrdNe+ 5 g I
1 1/ 2\, 2y
= N2 (rtNtdt+0-t NtdI/Vt ) 5 ﬁ (O't ) Nt dt
t
N N2 (27)
_ reg o e, (00)
Nl = AW St

N2 N
(Ut) — Tt 0y Q
= | | dt— | = ) aW,
( N, ) <Nt) '
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substituting (27) into (26)

Bt TtBt
d|— ) = BdX dt
(Nt) A ( N )

(o )2 - oN r.B
B || o | dt — (L ) a2 1) at
' ( N, (Nt> N,
( N)2 5 N (28)
0y t ry By o' By Q By
= ———dt — —dt — ——dW, dt
N, N TN TN,
N2 N
(O—t ) Bt O't Bt Q
= ——dt — ——d
N, N, Wi
we know that d (%) in equation (28) is a martingale under Q therefore
Bt UNBt
d(— ) = —L—dW2 2
( Nt) N, Wi (29)
comparing (28) and (29) leads to
N2 N N
(O't ) Bt Jt Bt Q O't Bt Q
dt — dW,> = ———dW,;~ 30
Nt Nt t Nt t ( )
simple factorization and rearrangement gives
AW = dWR — oNdt (31)

We should recognize (31) as the Girsanov result with aiv as the market price of risk A.

Cameron-Martin-Girsanov Theorem

The Cameron-Martin-Girsanov theorem states that if we have an existing Q-Brownian motion
and a new equivalent Q y-Brownian motion then there exists a previsible JF; measurable process
A that provides a mechanism to change from the existing measure to the new one, such that

AW = dWR + Adt (32)

and the corresponding \'° to change from the old measure to the new one is quoted below

\ = (Mom - MNew>
o

IUQ _ NQN (33)
()
noting from (28) and (29) that ;@ = <(Ugvj\2t23t>, pu@N =0 and that 0 = — (%) gives
(e2)-
A\ = = oV (34)

101t is important to note that we must use —\ or equivalently —o when the original Brownian process has a
negative diffusion term, as outlined below.



substituting ( 34 ) into ( 32 ) leads to (31) confirming that which was stated above.

AW = dwWR — oNdt (35)

Negative Diffusion Terms

It is important to note that when the diffusion term dW< in the original stochastic process is
negative we must use —\ or equivalently —o in order to successfully change measure. Altern-
atively we could make a positive variable substitution for the negative drift or even absorb the
negative sign into the symmetric Brownian process, which all amount to the same course of ac-
tion. Rearranging and substituting th@ = thQN + oV dt from equation (35) into the original
stochastic process (28) confirms this to be the correct course of action to change the drift from
that under the original measure to that of the new measure whilst at the same time making no
change to the diffusion term.

When the numeraire N, is pure discount bond Z(t,T') with associated equivalent terminal-
forward martingale measure Q7 then (35) becomes

dWOr = dw@ — oZdt (36)

Recalling the definition of the pure discount bond from [4]
Z(t,T) = A(t, T)e "BET) (37)

where
P RIS

1 — —a(T—t)
B, T) = (€—>
a

Since r; is normally distributed as shown in (16) this implies that Z(¢,7T") is lognormally dis-
tributed!!. Consequently In(Z (¢, T)) has normal dynamics giving

and

Var(In(Z(t,T))) = Var(in(A(t, T)e” B&TImY)
= Var(In(A(t,T)) — B(t,T)r)
= Var(In(A(t,T)) + Var(—=B(t,T)r:) (38)
= B(t,T)*Var(r,)
= B(t,T)*c*

Defining 0% = Var(In(Z(t,T))) and taking the square root leads to an expression for the
volatility
oy = +£/B(t,T)202 (39)

from which we take the negative root'” to get

oz =—B(t,T)o (40)

"'This comes from the fact that r; is stochastic and normally distributed. The exponential of any normal process
is lognormal. The A(t,T) and B(t,T) terms are deterministic.
12Since the diffusion term containing dW< in (28) is negative.
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it follows by substituting (40) into (36) that
AW = aW @ + B(t, T)odt (41)

Notation
Attention is drawn to the fact that B(t,T') above should not be confused with the cash account
numeraire B;.

Furthermore as discussed above can confirm the correctness of this measure change by substi-
tuting (41) into (28) to nullify the drift and make the process a martingale under the terminal
forward measure. This will also confirm our intuition surrounding the use of the negative volat-
ility parameter in (40).

2.6 Short Rate Solution using the Terminal Forward Measure

Substituting the change of measure kernel for the Brownian process, namely equation (36) from
section (2.4) the Vasicek short rate SDE in equation (13) becomes
dry = (0 — ary) dt + od B®
= (0 — ar,) dt + o (dBZ™ — o B(t, T)dt) (42)
= (0 —ar, — 0®B(t,T)) dt + 0dB"
This new SDE under the terminal measure can also be solved using the integrating factor short-
hand from [4]. Rearranging (42) and multiplying by the Integrating Factor, I; = e gives
dr, + arydt = (0 — 0*B(t,T)) dt + odB2"
Idr, + Iar,dt = I (0 — o*B(t,T)) dt + oIdBZ"
———
=d(Irs) 43)
d(Iry) =1 (0 — 0®B(t,T)) dt + cIdB"
d(e"ry) = ™ (0 — o*B(t,T)) dt + cedB2T

1 — e—a(T—t)

substituting for B(¢,T') from equation ( 37 ) gives
)) dt + oedBY*
a

d(e™r;) = e™ (0 — 0 (
4 atdt ) (eat _ efa(Tth)
=f0e"dt —0” | ————

a

) dt + oertdBer (44)

0'2 0'2

= fedt — (-) edt + (—) e~ T2t 4+ ge®dBRT
a a

integrating over ( s, t ), where 0 < s <t

eon‘,rt o easrs — a (eat . eas) _ (eat - eas)

(45)



rearranging terms

0 o? o2 t
eat,rt _ easrs + <a . ¥> (eat . eas) + ﬁ (efa(Tth) . efa(Tf2s)) + 0_/ eaungT (46)
leading to
0 o2 o2 t
ry = e_a(t_s)rs‘l—(— _ _2) (1 _ e—a(t—s))_{_ﬁ (e—a(T—t) _ e—a(T—i—t—Qs))_H)./ e—a(t—u)ngT
a a a s
47
for convenience we can factorize and express this as
t
re =e I+ FOT (s, t) + o / e~alt-wqpUr (48)
where ; ) )
g —a(t—s o —a(T— —a —2s
FQT(S7t) = (a — ?) (1 — ealt )) + 53 (e (T—t) _ —a(T+t—2 )) (49)

This solution is identical to that under the cash measure, except that it contains an additional
factor FOr.

2.7 Short Rate Dynamics under the Terminal Measure

The dynamics of the Vasicek solution under the terminal forward measure outlined in section
(2.6) and equations (48) and (49) in particular are derived as follows.

Firstly observe that the short rate solution under the terminal measure is Gaussian, since the
Brownian term is normally distributed by definition, whereby B; ~ N (0, t).

The distribution mean p can be found by taking the expectation of equation (48) and noting that
the drift terms are deterministic and that both the expected value of the diffusion term and the
stochastic integral are zero.

t
EQr (Tt\]:s) — EQr [e‘“(t‘s)rs + FQT(S7t)’fS] +EQT [a/ e‘“(t‘“)dB;Qﬂfs}

-~

=0 (50)
= E [e‘a(t_s)rs + FOr (s, t)|fs]

= e =)y 4 F(s,t)

Similarly the variance o2 is

¢
Var®r (ry| F,) = Var®r (e_“(t_s)rs + FOr(s, t)|]:s) +Var®r (a/ 6_“@_”)ng?|]:3)

=0

¢
= Var®r (a/ e“(t”)ngT’fs>

2

' t
(O’/ e—a(t—u)ngT> ‘fs _EQT |:O'/ e_a(t—u)ngT’./—"s:|

N / ~\~

=0

2
— FQr

J/

~
Apply It6 Isometry

(D
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The variance of the drift term in (51) was zero and likewise the term expectation of the stochastic
integral is zero. What remains is to apply expand and solve the squared stochastic term using
[t6’s isometry rule, which eliminates the randomness, since dBf becomes dt.

t 2
(a / e_“(t_“)ngT> m]

t
= EOr {02/ e_2a(t_“)du]}"s}

Var®r (r,|F,) = B

(32)
t
:0_2/ 6—2a(t—u)du
o2 (1 _ 6—2a(t—s))
N 2a
Hence under the terminal forward measure the Vasicek short rate has dynamics
0,2 1 — 6—2a(t—s)
et~ N (‘”(”)rs (), T ) (53)
a
where ) ) )
Q _(Z2_9° _ _—alt—s) 9 (—a(T—t) _  —a(T+t—2s)
FOT(s,t) = (a a2) (1-e )+ 53 (e e ) (54)

Finally the dynamics for the limiting case for ¢ and 7" are considered. We examine the dynamics
when the filtration time'® + — oo and bond maturity 7' — co.

Limits under the Terminal Forward Measure

When using the savings account numeraire and the corrsponding cash measure Q the filtration
time t had no upperbound and therefore we considered the limiting case to be t — oo. However
when using a bond numeraire and the terminal forward measure Qr the filtration time t cannot
exceed the maturity of the underlying bond i.e. t < T'. As a result under the terminal forward
measure the limiting case for t becomest — T.

Knowing from (53) and (54) that

REOT[r,|F,] = e~ =) 4 FOr(s.1)
2

0 o o?
—a(t—s —a(t—s —a(T—t —a(T+t—2s
¢ ( )7’5"‘(5—?)(1_6 ( ))+(@>(e | )_6 ( ))

the limit as ¢ — oo is given by

6 o o? T_T
i Q 1) = ¢~ T—9) - — (T—s) - —a(T-T) _ ,—a(T+T~2s)

—a(T—s 0 02 —a(T—s 0-2 —2a(T—s
=T )7’5—1-(5——)(1—@ T ))+(2_a?)(1_62(T ))

13 or pricing date
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by further considering the limiting case where the bond maturity 7" — oo we observe that the
exponential terms in (56) tend to zero giving

) - 6 o o?
i (7)) = (7 %) + (52)

T—o0 ; ) (57)
o
- (5 - ﬁ)
and similarly the variance is given by (53)
a2 (1 6—2a(t—s)
Var® (r,|F,) = ( > ) (58)
letting ¢ — 1" produces the below the limiting case
2 _ ,—2a(T-s)
. or o (1 e )
}1_)1211 Var<T (ry|Fs) = 5 (59)
and by further taking the limit 7" — oo this becomes
Q o’
. . _ o
}1_)11% Var<T (ry|Fs) = 5 (60)

T—oo

Therefore in the limiting case where ¢ — 7" and 7" — oo under the terminal forward measure

has the following dynamics
0 o o?
Qr N Z_Z ) 61
K ((a 2a2) ’2@) e

o? o?

Model Dynamics under Different Measures
When changing measures only the mean of the model distribution is transformed and the vari-
ance term being measure invariant remains unchanged.

or equivalently

Comparing the dynamics under the cash and terminal measures, as expected, only the distribu-

tion mean is different and the variance is unchanged and measure invariant. It can be seen that

the expected value tends to <b — %) Hence r, in the limit tends to the reversion level less

some factor % The variance tends to (%), which is the model variance scaled by the speed

of mean reversion.
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3 Option Pricing

To evaluate the price of a European option we can discount the expected value of the payoff
using (19)

Hr
P(T,T)
——

=1

V; = P(t, T)E®r \Fi | = P(t, T)E®T [Hy|F] (63)

In the case when our underlying process is log-normal we can evaluate the price of a European
option as the expected value of a log-normal process using the equation below and substituting
the mean and variance from the model dynamics derived above. We provide a detailed example
of how to do this in the case of bond options in our paper [6].

3.1 Expected Value of a Log-Normal Process

If X is a random variable that is lognormally distributed then let us define Y := [n(X) with
mean 4 and variance o2 with Y ~ N (u, 0?). Knowing that the expectation of a random variable,
X is defined as E(X) = [ _Jr;o X f(x) dz, where f(x) denotes the probability density function of
X we deduce that

E% [¢(X — K)'] = / T DX — B e ) dloga (64)

o 2ro
Since Y := In(X) this can be written in terms of Y as

E° [¢ (X — K)*] = / (e — K e () gy (65)

oo 2mo

4 Conclusion

In conclusion we have discussed numeraires, measures and how and why sometimes we apply a
change of measure. We reviewed athe Vasicek short rate model for interest rates and evaluated
the dynamics of the process, whereby changing from a risk neutral measure to a terminal-
forward measure made the calculations easier. Finally we outlined how to proceed to value an
option using the model dynamics derived, citing a detailed example.
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