#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# yfinance - market data downloader
# https://github.com/ranaroussi/yfinance
#
# Copyright 2017-2019 Ran Aroussi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from __future__ import print_function

import requests as _requests
import re as _re
import pandas as _pd
import numpy as _np
import sys as _sys

try:
    import ujson as _json
except ImportError:
    import json as _json


user_agent_headers = {
    'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'}


def is_isin(string):
    return bool(_re.match("^([A-Z]{2})([A-Z0-9]{9})([0-9]{1})$", string))


def get_all_by_isin(isin, proxy=None, session=None):
    if not(is_isin(isin)):
        raise ValueError("Invalid ISIN number")

    from .base import _BASE_URL_
    session = session or _requests
    url = "{}/v1/finance/search?q={}".format(_BASE_URL_, isin)
    data = session.get(url=url, proxies=proxy, headers=user_agent_headers)
    try:
        data = data.json()
        ticker = data.get('quotes', [{}])[0]
        return {
            'ticker': {
                'symbol': ticker['symbol'],
                'shortname': ticker['shortname'],
                'longname': ticker['longname'],
                'type': ticker['quoteType'],
                'exchange': ticker['exchDisp'],
            },
            'news': data.get('news', [])
        }
    except Exception:
        return {}


def get_ticker_by_isin(isin, proxy=None, session=None):
    data = get_all_by_isin(isin, proxy, session)
    return data.get('ticker', {}).get('symbol', '')


def get_info_by_isin(isin, proxy=None, session=None):
    data = get_all_by_isin(isin, proxy, session)
    return data.get('ticker', {})


def get_news_by_isin(isin, proxy=None, session=None):
    data = get_all_by_isin(isin, proxy, session)
    return data.get('news', {})


def empty_df(index=[]):
    empty = _pd.DataFrame(index=index, data={
        'Open': _np.nan, 'High': _np.nan, 'Low': _np.nan,
        'Close': _np.nan, 'Adj Close': _np.nan, 'Volume': _np.nan})
    empty.index.name = 'Date'
    return empty


def empty_earnings_dates_df():
    empty = _pd.DataFrame(
        columns=["Symbol", "Company", "Earnings Date",
                 "EPS Estimate", "Reported EPS", "Surprise(%)"])
    return empty


def get_html(url, proxy=None, session=None):
    session = session or _requests
    html = session.get(url=url, proxies=proxy, headers=user_agent_headers).text
    return html


def get_json(url, proxy=None, session=None):
    session = session or _requests
    html = session.get(url=url, proxies=proxy, headers=user_agent_headers).text

    if "QuoteSummaryStore" not in html:
        html = session.get(url=url, proxies=proxy).text
        if "QuoteSummaryStore" not in html:
            return {}

    json_str = html.split('root.App.main =')[1].split(
        '(this)')[0].split(';\n}')[0].strip()
    data = _json.loads(json_str)[
        'context']['dispatcher']['stores']['QuoteSummaryStore']
    # add data about Shares Outstanding for companies' tickers if they are available
    try:
        data['annualBasicAverageShares'] = _json.loads(
            json_str)['context']['dispatcher']['stores'][
                'QuoteTimeSeriesStore']['timeSeries']['annualBasicAverageShares']
    except Exception:
        pass

    # return data
    new_data = _json.dumps(data).replace('{}', 'null')
    new_data = _re.sub(
        r'\{[\'|\"]raw[\'|\"]:(.*?),(.*?)\}', r'\1', new_data)

    return _json.loads(new_data)


def camel2title(o):
    return [_re.sub("([a-z])([A-Z])", r"\g<1> \g<2>", i).title() for i in o]


def auto_adjust(data):
    df = data.copy()
    ratio = df["Close"] / df["Adj Close"]
    df["Adj Open"] = df["Open"] / ratio
    df["Adj High"] = df["High"] / ratio
    df["Adj Low"] = df["Low"] / ratio

    df.drop(
        ["Open", "High", "Low", "Close"],
        axis=1, inplace=True)

    df.rename(columns={
        "Adj Open": "Open", "Adj High": "High",
        "Adj Low": "Low", "Adj Close": "Close"
    }, inplace=True)

    df = df[["Open", "High", "Low", "Close", "Volume"]]
    return df[["Open", "High", "Low", "Close", "Volume"]]


def back_adjust(data):
    """ back-adjusted data to mimic true historical prices """

    df = data.copy()
    ratio = df["Adj Close"] / df["Close"]
    df["Adj Open"] = df["Open"] * ratio
    df["Adj High"] = df["High"] * ratio
    df["Adj Low"] = df["Low"] * ratio

    df.drop(
        ["Open", "High", "Low", "Adj Close"],
        axis=1, inplace=True)

    df.rename(columns={
        "Adj Open": "Open", "Adj High": "High",
        "Adj Low": "Low"
    }, inplace=True)

    return df[["Open", "High", "Low", "Close", "Volume"]]


def parse_quotes(data, tz=None):
    timestamps = data["timestamp"]
    ohlc = data["indicators"]["quote"][0]
    volumes = ohlc["volume"]
    opens = ohlc["open"]
    closes = ohlc["close"]
    lows = ohlc["low"]
    highs = ohlc["high"]

    adjclose = closes
    if "adjclose" in data["indicators"]:
        adjclose = data["indicators"]["adjclose"][0]["adjclose"]

    quotes = _pd.DataFrame({"Open": opens,
                            "High": highs,
                            "Low": lows,
                            "Close": closes,
                            "Adj Close": adjclose,
                            "Volume": volumes})

    quotes.index = _pd.to_datetime(timestamps, unit="s")
    quotes.sort_index(inplace=True)

    if tz is not None:
        quotes.index = quotes.index.tz_localize(tz)

    return quotes


def parse_actions(data, tz=None):
    dividends = _pd.DataFrame(
        columns=["Dividends"], index=_pd.DatetimeIndex([]))
    splits = _pd.DataFrame(
        columns=["Stock Splits"], index=_pd.DatetimeIndex([]))

    if "events" in data:
        if "dividends" in data["events"]:
            dividends = _pd.DataFrame(
                data=list(data["events"]["dividends"].values()))
            dividends.set_index("date", inplace=True)
            dividends.index = _pd.to_datetime(dividends.index, unit="s")
            dividends.sort_index(inplace=True)
            if tz is not None:
                dividends.index = dividends.index.tz_localize(tz)

            dividends.columns = ["Dividends"]

        if "splits" in data["events"]:
            splits = _pd.DataFrame(
                data=list(data["events"]["splits"].values()))
            splits.set_index("date", inplace=True)
            splits.index = _pd.to_datetime(splits.index, unit="s")
            splits.sort_index(inplace=True)
            if tz is not None:
                splits.index = splits.index.tz_localize(tz)
            splits["Stock Splits"] = splits["numerator"] / \
                splits["denominator"]
            splits = splits["Stock Splits"]

    return dividends, splits


class ProgressBar:
    def __init__(self, iterations, text='completed'):
        self.text = text
        self.iterations = iterations
        self.prog_bar = '[]'
        self.fill_char = '*'
        self.width = 50
        self.__update_amount(0)
        self.elapsed = 1

    def completed(self):
        if self.elapsed > self.iterations:
            self.elapsed = self.iterations
        self.update_iteration(1)
        print('\r' + str(self), end='')
        _sys.stdout.flush()
        print()

    def animate(self, iteration=None):
        if iteration is None:
            self.elapsed += 1
            iteration = self.elapsed
        else:
            self.elapsed += iteration

        print('\r' + str(self), end='')
        _sys.stdout.flush()
        self.update_iteration()

    def update_iteration(self, val=None):
        val = val if val is not None else self.elapsed / float(self.iterations)
        self.__update_amount(val * 100.0)
        self.prog_bar += '  %s of %s %s' % (
            self.elapsed, self.iterations, self.text)

    def __update_amount(self, new_amount):
        percent_done = int(round((new_amount / 100.0) * 100.0))
        all_full = self.width - 2
        num_hashes = int(round((percent_done / 100.0) * all_full))
        self.prog_bar = '[' + self.fill_char * \
            num_hashes + ' ' * (all_full - num_hashes) + ']'
        pct_place = (len(self.prog_bar) // 2) - len(str(percent_done))
        pct_string = '%d%%' % percent_done
        self.prog_bar = self.prog_bar[0:pct_place] + \
            (pct_string + self.prog_bar[pct_place + len(pct_string):])

    def __str__(self):
        return str(self.prog_bar)
