API Methods | WX

cjucintra

Contents

Initialize Function 1
Schedule Function 1
Optional Function 3
Data Fetching 3
Order Placement Functions 4

Initialize Function
The first step in writing the strategy is to define the initialize function. Before the start of the
strategy, the initialize() function will be called and passed in a context variable. The context is a
persistent namespace for you to store variables you need to access, from anywhere in your
algorithm.
Syntax:

def initialize(context):

pass

Schedule Function

Inside the initialize function, you can schedule the strategy logic. The ‘schedule_function’ from
zipline.api allows you to specify on what days and at what times you want a function to run. This
means you can easily schedule a function to run once a day, once a month, or only execute orders

10 minutes before the market closes.

Syntax:
schedule_function(
func = <<Name of the function>>,
date_rule = <<Date rules>>,

time_rule = <<Time rules>>

© Copyright Quantinsti Quantitative Learning Private Limited 1

Parameters:
func: This is the first parameter to the schedule function. The name of the function to be scheduled

is passed here.

date_rules: We can specify different rules to schedule the function. For example, every day, start

of the week or the start of the month.

Monthly modes:

e month_start

e month_end

It accepts a days_offset parameter to offset the function execution by a specific number of trading
days, from the beginning and end of the month respectively. All day calculations are done using
trading days for your selected trading calendar. If the offset exceeds the number of trading days in

amonth, the function isn't run during that month.

Weekly modes:

e week start

e week end

It also accepts a days_offset parameter. If the function execution is scheduled for a market holiday
and there is at least one more trading day in the week, the function will run on the next trading
day. If there are no more trading days in the week, the function is not run during that week.

Specifying date_rules as every_day will run it once a day.

time_rules:

e market open
e market close

It accepts hours and minutes as parameters.

Example:

The strategy function is called at the start of the week at 12 noon.

© Copyright Quantinsti Quantitative Learning Private Limited 2

schedule_function(strategy,
date_rules.week_start(days offset=0),

time_rules.market_open(hours=2, minutes=30))

Refer to this document to read more about schedule_function.

Optional Function

After the strategy has been initialized, the handle_data() function is called every minute. At every
call, it passes the same context variable and a data object containing the current trading bar with
open, high, low, and close (OHLC) prices, as well as volume for all the currency pairs.

Example:

def handle_data(context, data):

pass

Data Fetching

The data.history function is used to fetch the price data for the currency pairs.

Parameters:

e assets: Currency pair symbol or iterable of currency pair symbols.

e fields: String or iterable of strings. Valid values are 'price) 'open, 'high’, 'low', 'close’, and
'volume'.

e bar_count: Integer number of bars of trade data.

e frequency: 'Im' for minute data or '1d' for daily data. For other frequencies, use the pandas

resample function.

Returns:

e pandas DataFrame indexed by the date

© Copyright Quantinsti Quantitative Learning Private Limited 3

https://blueshift.quantinsti.com/docs/scheduling/

Example:

security_data = data.history(
assets = symbol(FXCM(‘EUR/USD’)),
fields = ‘price),
bar count =100,
)
‘price’ is forward-filled, returning last known price, if there is one, otherwise, NaN is returned. In
the above code, we have stored the historical daily price data for the past 100 days in
security_data pandas DataFrame.
Note:
data.history() can return any one of the following:
e A Pandas Series object (if the request is for single security and single field)
e A Pandas DataFrame object (multiple securities and single field - with securities in columns
OR with single security and multiple fields - fields in columns)
e A Pandas Panel Data object (multiple securities AND multiple fields - securities in minor
axis). Series or DataFrame objects returned will be indexed by dates and Panel Data objects
will be indexed by fields. To learn more about Pandas Series, DataFrame and Panel data,

see here.

Refer to this document to read more about data fetching on Blueshift.

Order Placement Functions
Once the core strategy logic is defined, you need to place orders to your broker. To place an order,

strategy needs to specify an asset, and the other order parameters.

order(asset, quantity)
You can also specify market, limit orders or other order types, supported by the platform and broker

you are using.

While order is the base function to trade, there are a bunch of other helper functions that do

automatic order sizing. ‘order_value’ and ‘order_target_percent’ are widely used order sizing functions.

order_value(asset, value)

Place order for an asset with a specific dollar value.

© Copyright Quantinsti Quantitative Learning Private Limited 4

https://pandas.pydata.org/pandas-docs/stable/dsintro.html
https://blueshift.quantinsti.com/docs/datafetch/

order_target_percent(asset, percent)

Place order for an asset with a specific percent of current portfolio value.

To learn more about placing trade orders on Blueshift, follow this document.

© Copyright Quantinsti Quantitative Learning Private Limited 5

https://blueshift.quantinsti.com/docs/placingtrades/

